
- •Электрический заряд. Электрическое поле. Основные характеристики электростатического поля – напряженность и потенциал. Графическое представление электростатических полей.
- •Напряженность и потенциал электростатического поля. Расчет полей методом суперпозиции (заряженный стержень, кольцо).
- •Потенциальность электростатического поля. Интегральная и дифференциальная связь напряженности и потенциала.
- •Теорема Остроградского-Гаусса для электростатического поля в вакууме (без вывода) и применение теоремы к расчету поля заряженной плоскости и сферы.
- •Электростатическое поле в диэлектриках. Диполи. Поведение диполя в однородном и неоднородном электростатическом поле. Поляризованность (вектор поляризации).
- •Теорема Остроградского-Гаусса для электростатического поля в диэлектрике (вывод). Вектор электрического смещения, диэлектрическая проницаемость и диэлектрическая восприимчивость.
- •Поведение двух векторов e & d на границе двух диэлектриков.
- •Теорема Остроградского-Гаусса для электростатического поля в диэлектрике (без вывода). Свободные и связанные заряды. Расчет поля диэлектрика в виде цилиндра с равномерно распределенным зарядом.
- •Проводники в электростатическом поле. Емкость. Конденсаторы.
- •Емкость. Конденсаторы. Энергия электростатического поля.
- •Постоянный электрический ток. Вектор плотности тока. Классическая теория электропроводимости металлов. Закон Ома в дифференциальной форме.
- •Закон Ома в интегральной форме. Обобщенный закон Ома.
- •Магнитное поле. Вектор магнитной индукции, как силовая характеристика магнитного поля. Силовые линии магнитного поля.
- •Магнитное поле тока. Закон Био-Савара-Лапласа и его применение к расчету магнитной индукции на оси кругового витка с током методом суперпозиции.
- •Расчет магнитного поля прямолинейного проводника с током с помощью закона Био-Савара-Лапласа и принципа суперпозиции.
- •Закон полного тока для магнитного поля в вакууме. Сцепленный ток. Применение закона полного тока для расчета магнитного поля тороида.
- •Применение закона полного тока для расчета магнитного поля тока тороида и длинного соленоида. Вихревой характер магнитного поля.
- •Силовое действие магнитного поля на проводник с током и контур с током.
- •Движение заряженных частиц в магнитном поле. Сила Ампера и Лоренса.
- •Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника и контура с током в магнитном поле.
- •Явление электромагнитной индукции. Законы Фарадея-Максвелла. Правило Ленца. Вывод закона электромагнитной индукции на основе электронной теории.
- •Явление самоиндукции. Токи замыкания и размыкания. Взаимная индукция.
- •Энергия магнитного поля. Объемная плотность энергии.
- •Магнитное поле в веществе. Магнитные моменты атомов. Намагниченность. Макро- и микротоки.
- •Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Поведение векторов в и н на границе магнетиков.
- •Типы магнетиков. Магнитная проницаемость. Элементарная теория диа- и парамагнетизма.
- •Ферромагнетики. Домены. Гистерезис. Точка Кюри.
- •Основы теории Максвелла для электромагнитного поля. Уравнения Максвелла в интегральной форме. Ток смещения.
- •Гармонические электромагнитные колебания и их характеристики. Электрический колебательный контур. Дифференциальное уравнение собственных гармонических колебаний и его решение.
- •Затухающие электромагнитные колебания. Дифференциальное уравнение и его решение. Логарифмический декремент.
- •Вынужденные электромагнитные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс.
- •Сложение однонаправленных и взаимно перпендикулярных колебаний.
Сложение однонаправленных и взаимно перпендикулярных колебаний.
1. Сложение колебаний одного направления.
Сложим два колебания одинаковой частоты,
но различных фаз и
амплитуд.
(4.40)
При
наложении колебаний друг на друга
Введем новые паpаметpы А и j согласно
уравнениям:
(4.42)
Система уравнений (4.42) легко
решается.
(4.43)
(4.44)
Таким
образом, для х окончательно получаем
уравнение
(4.45)
Итак, в
результате сложения однонаправленных
колебаний одинаковой частоты получаем
гармоническое (синусоидальное) колебание,
амплитуда и фаза которого определяется
формулами (4.43) и (4.44).
2. Найдем результат
сложения двух гармонических колебаний
одинаковой частоты ω, которые происходят
во взаимно перпендикулярных направлениях
вдоль осей х и у. Начало отсчета для
простоты выберем так, чтобы начальная
фаза первого колебания была равна нулю,
и запишем это в виде
(1)
где
α — разность фаз обоих колебаний, А и В
равны амплитудам складываемых колебаний.
Уравнение траектории результирующего
колебания определим исключением из
формул (1) времени t. Записывая складываемые
колебания как
и
заменяя во втором уравнении
на
и
на
,
найдем после несложных преобразований
уравнение эллипса, у которого оси
ориентированы произвольно относительно
координатных осей:
(2)
Поскольку
траектория результирующего колебания
имеет форму эллипса, то такие колебания
называются эллиптически
поляризованными.
Размеры
осей эллипса и его ориентация зависят
от амплитуд складываемых колебаний и
разности фаз α.