Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-15 ответы физиология.docx
Скачиваний:
63
Добавлен:
26.09.2019
Размер:
435.79 Кб
Скачать

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;

  • количество и характер ветвления отростков;

  • длину нейрона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 смПо количеству отростков выделяют следующие морфологические типы нейронов

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;

  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;

  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Функциональные структуры нейрона. 1. Структуры, обеспечивающие синтез макромолекул, которые транспортируются по аксону и дендритам, - это сома (тело нейрона), выполняющая трофическую функцию по отношению к отросткам (аксону и дендритам) и клеткам-эффекторам. Отросток, лишенный связи с телом нейрона, дегенерирует. 2. Структуры, воспринимающие импульсы от других нервных клеток, - это тело и дендриты нейрона с расположенными на них шипиками, занимающие до 40\% от поверхности сомы нейрона и дендритов. Если шипики не получают импульсацию, то они исчезают. Импульсы могут поступать и к окончанию аксона - аксо-аксонные синапсы. Это происходит, например, в случае пресинаптического торможения. 3. Структуры, в которых обычно возникает ПД (генераторный пункт ПД), - аксонный холмик. 4. Структуры, проводящие возбуждение к другому нейрону или к эффектору, - аксон. 5. Структуры, передающие импульсы на другие клетки, - синапсы. Интегративная функция нейрона Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки. На мембране нейрона происходит процесс алгебраического суммирования положительных и отрицательных колебаний потенциала. При одновременной активации нескольких возбуждающих синапсов общий ВПСП нейрона представляет сумму отдельных местных ВПСП и ТПСП – происходит взаимное вычитание их эффектов. В конечном итоге реакция нервной клетки определяется суммой всех синаптических влияний. Преобладание тормозных синаптических воздействий приводит к гиперполяризации мембраны и торможению деятельности клетки. При сдвиге мембранного  потенциала в сторону деполяризации повышается возбудимость клетки. Ответный разряд нейрона возникает лишь тогда, когда изменения мембранного потенциала достигают порогового значения – критического уровня деполяризации. Для этого величина ВПСП клетки должна составлять примерно 10 мв. В крупных (афферентных и эфферентных) нейронах возбудимость различных участков мембраны неодинакова. С момента достижения критического уровня деполяризации начинается лавинообразное вхождение натрия в клетку и регистрируется потенциал действия (ПД)

Нейроглия – это клетки, окружающие нейроны и входящие вместе с ними в состав ЦНС и ПНС. Количество глиальных клеток на порядок выше количества нервных клеток.

Функции нейроглии:

  1. опорная – поддерживает нервные клетки

  2. изолирующая – препятствует переходу нервных импульсов с тела одного нейрона на тело другого

  3. регуляторная – участвует в регуляции работы ЦНС, в частности, обеспечивая передачу импульсов в нужном направлении

  4. трофическая – участвует в обменных процессах нейронов

  5. регуляторная – регулирует возбудимость нервных клеток.

24 Физиологические свойства нервных центров. Нервные центры обладают рядом характерных функциональных свойств, зависящих от наличия сннапсов и большого количества нейронов, входящих в их состав. Основными свойствами нервных центров являются:

  1. одностороннее проведение возбуждения;

  2. задержка проведения возбуждения;

  3. суммация возбуждений;

  4. трансформация ритма возбуждений;

  5. рефлекторное последействие;

  6. быстрая утомляемость.

Одностороннее проведение возбуждения. В центральной нервной системе возбуждение распространяется только в одном направлении — от рецепторного нейрона к эффекторному. Это обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении — от нервного окончания, выделяющего медиатор,

к постсинаптической мембране.

Задержка проведения возбуждения в нервных центрах также связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает только при длительном раздражении рецепторов слизистой оболочки носа. Впервые явление суммации возбуждений в нервных центрах описано M. Сеченовым в 1863 г.

Трансформация ритма воз6уждениний. Центральная нервная система на любой ритм раздражения, даже медленный отвечает залпом импульсов. Частота возбуждений поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в 1 с. Этой особенностью ЦНС объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

Рефлекторное последействие. Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый период. Это явление получило название рефлекторного последействия. Установлены два механизма, обусловливающие последействие.

Второй механизм является результатом циркуляции нервных импульсов по замкнутым нейронным цепям нервного центра и обеспечивает более длительное последействие.

Возбуждение одного из нейронов передается на другой, а по ответвлениям его аксона вновь возвращается к первой клетке и т. д.