Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-15 ответы физиология.docx
Скачиваний:
38
Добавлен:
26.09.2019
Размер:
435.79 Кб
Скачать

105, Моторика тонкой и толстой кишки. Ее регуляция.

Моторная деятельность тонкой кишки. Сокращения тонкой кишки осуществляются в результате координированных движений продольного (наружного) и поперечного (внутреннего) слоев гладкомышечных клеток. По функциональному признаку сокращения делят на две группы: 1) локальные - обеспечивают растирание и перемешивание содержимого тонкой кишки;

2) направленные на передвижение содержимого кишки. Выделяют несколько типов сокращений:

• маятникообразные,• ритмическая сегментация,• перистальтические,• тонические.

Маятникообразные сокращения обусловлены последовательным сокращением кольцевых и продольных мышц кишки. Последовательные изменения длины и диаметра кишки приводят к перемещению пищевой кашицы то в одну, то в другую сторону (наподобие маятника). Маятникообразные сокращения способствуют перемешиванию химуса с пищеварительными соками. Ритмическая сегментация обеспечивается сокращением кольцевых мышц в результате чего, образующиеся поперечные перехваты делят кишку на небольшие сегменты. Ритмическая сегментация способствует растиранию химуса и перемешиванию его с пищеварительными соками. Перестальтические сокращения обусловлены одновременным сокращением продольного и кольцевого слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и проталкивание химуса в одновременно расширенный, за счет сокращения продольных мышц нижний участок кишки. Таким образом перистальтические сокращения обеспечивают продвижение химуса по кишке. Тонические сокращения имеют небольшую скорость и даже могут вообще не распространяться, а только суживать просвет кишки на незначительном протяжении.

Регуляция моторной деятельности тонкой кишки. Моторная деятельность тонкой кишки регулируется нервными и гуморальными механизмами. Большое значение в регуляции моторики тонкой кишки имеет интрамуральная нервная система (метасимпатическая система). Интрамуральные нейроны обеспечивают координирование сокращения кишки. Особенно велика их роль в перистальтических сокращениях. На интрамуральные механизмы регуляции оказывают влияние экстрамуральные симпатические и парасимпатические нервные механизмы, а также гуморальные факторы. Парасимпатические нервные волокна усиливают, а симпатические тормозят сокращения тонкой кишки. Акт приема пищи условно- и безусловно-рефлекторно кратковременно тормозит, а затем усиливает моторику тонкой кишки. Моторная деятельность тонкой кишки во многом зависит от физических и химических свойств химуса: грубая пища и жиры повышают ее активность. Для моторной деятельности тонкой кишки важное значение имеют рефлексы с различных отделов пищеварительного тракта.

Гуморальные вещества оказывают влияние непосредственно на мышечные клетки кишки, а через рецепторы - на нейроны интрамуральной нервной системы. Усиливают моторику тонкой кишки: вазопрессин, брадикинин, серотонин, гистамин, гастрин, мотилин, холецистокинин-панкреозимин, щелочи, кислоты, соли и др.Моторная деятельность толстой кишки обеспечивает накопление кишечного содержимого, всасывание из него ряда веществ, в основном воды, формирование каловых масс и удаление их из кишечника. Различают следующие виды сокращений толстой кишки:• тонические,• маятникообразные,• ритмическая сегментация,• перистальтические сокращения,• антиперистальтические сокращения (способствуют всасыванию воды и формированию каловых масс),• пропульсивные сокращения - обеспечивают продвижение содержимого кишечника в каудальном направлении.

Регуляция моторной деятельности толстой кишки осуществляется автономной нервной системой, причем, симпатические нервные волокна тормозят моторику, а парасимпатические - усиливают. Моторику толстой кишки тормозят: серотонин, адреналин, глюкагон, а также раздражение механорецепторов прямой кишки. Большое значение в стимуляции моторики толстой кишки имеют местные механические и химические раздражения.

106) Механизм всасывания веществ в пищеварительном канале.

Всасывание – процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма – кровь и лимфу. Всасывание происходит на протяжении всего желудочно-кишечного тракта, но его интенсивность неодинакова и зависит от трех причин:

1) строения слизистой оболочки;2) наличия конечных продуктов;3) времени нахождения содержимого в полости.

Слизистая оболочка нижней части языка и дна ротовой полости истончена, но способна к всасыванию воды и минеральных веществ. Вследствие короткой продолжительности нахождения пищи в пищеводе (примерно 5–8 с) всасывания не происходит. В желудке и двенадцатиперстной кишке всасывается небольшое количество воды, минеральных веществ, моносахаридов, пептонов и полипептидов, лекарственных компонентов, алкоголя.

Основное количество воды, минеральных веществ, конечных продуктов расщепления белков, жиров, углеводов, лекарственных компонентов всасывается в тонком кишечнике. Это связано с рядом морфологических особенностей строения слизистой оболочки, за счет которых значительно увеличивается площадь контакта с наличием складок, ворсинок и микроворсинок). Каждая ворсинка покрыта однослойным цилиндрическим эпителием, который обладает высокой степенью проницаемости.В центре располагается сеть лимфоидных и кровеносных капилляров, относящихся к классу фенестрированных. Они имеют поры, через которые проходят питательные вещества. В соединительной ткани также находятся гладкомышечные волокна, обеспечивающие движения ворсинок. Оно может быть нагнетательным и колебательным. Метсимпатическая нервная система осуществляет иннервацию слизистой оболочки.В толстом кишечнике происходит формирование каловых масс. Слизистая этого отдела обладает способностью к всасыванию питательных веществ, но этого не происходит, так как в норме они поглощаются в вышележащих структурах.

Механизм всасывания воды и минеральных веществ

Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение энтероцитов, поскольку поглощение происходит неодинаково через апикальную, базальную и латеральные мембраны.Исследованиями доказано, что всасывание – активный процесс деятельности энтероцитов. В опыте вводили в просвет желудочно-кишечного тракта монойодуксусную кислоту, которая вызывает гибель клеток кишечника. Это привело к резкому снижению интенсивности всасывания. Для этого процесса характерны транспортировка питательных веществ в двух направлениях и избирательность.

Всасывание воды осуществляется на протяжении всего желудочно-кишечного тракта, но наиболее интенсивно в тонком кишечнике. Процесс идет пассивно в двух направлениях за счет наличия осмотического градиента, который создается при движении Na, Cl и глюкозы. Во время приема пищи, содержащей большое количество воды, из просвета кишечника вода поступает во внутреннюю среду организма. И наоборот, при употреблении гиперосмотической пищи вода из плазмы крови выделяется в полость кишечика. За сутки всасывается около 8–9 л воды, из которых около 2,5 л поступает с пищей, а остальной объем входит в состав пищеварительных соков.

Всасывание Na, так же как и воды, происходит во всех отделах, но наиболее – интенсивно в толстом кишечнике. Na проникает через апикальную мембрану щеточной каймы, в которой находится транспортный белок – пассивный транспорт. А через базальную мембрану осуществляется активный транспорт – движение по электрохимическому градиенту концентрации.Транспорт Cl связан с Na и также направлен по электрохимическому градиенту концентрации Na,содержащегося во внутренней среде.

Всасывание бикарбонатов основано на поступлении ионов H из внутренней среды во время транспорта Na. Ионы H взаимодействуют с бикарбонатами и образуют угольную кислоту. Под влиянием карбоангидразы кислота распадается на воду и углекислый газ. Далее всасывание во внутреннюю среду продолжается пассивно, выделение образовавшихся продуктов происходит через легкие при дыхании.Всасывание двухвалентных катионов идет гораздо труднее. Наиболее легко транспортируется Ca. При небольших концентрациях катионы переходят внутрь энтероцитов с помощью кальцийсвязывающего белка путем облегченной диффузии. Из клеток кишечника он поступает во внутреннюю среду при помощи активного транспорта. При высокой концентрации катионы всасываются благодаря простой диффузии.Железо поступает внутрь энтероцита путем активного транспорта, в ходе которого образуется комплекс железа и белка ферритина.

Механизмы всасывания углеводов, жиров и белков

Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно– и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем всасывание глюкозы сопряжено с ионами Na – симпорт. Манноза и пентоза поступают пассивно по градиенте концентрации глюкозы. Фруктоза поступает с помощью облегченной диффузии. Наиболее интенсивно идет всасывание глюкозы в кровь.

Всасывание белков наиболее интенсивно протекает в верхних отделах тонкого кишечника, причем белки животного происхождения составляют 90–95 %, а растительного – 60–70 %. Основными продуктами распада, которые образуются в результате обмена веществ, являются аминокислоты, полипептиды, пептоны. Для транспорта аминокислот необходимо наличие молекул переносчика. Выделено четыре группы транспортных белков, обеспечивающих активный процесс всасывания. Поглощение полипептидов происходит пассивно по градиенту концентрации. Продукты поступают непосредственно во внутреннюю среду и с током крови разносятся по организму.

Скорость всасывания жиров значительно меньше, наиболее активно всасывание протекает в верхних отделах тонкого кишечника. Транспорт жиров осуществляется в виде двух форм – глицерина и жирных кислот, состоящих из длинных цепей (олеиновой, стеариновой, пальмитиновой и др.). Глицерин поступает пассивно внутрь энтероцитов. Жирные кислоты образуют мицеллы с желчными кислотами и только в такой форме направляются к мембране кишечных клеток. Здесь комплекс распадается: жирные кислоты растворяются в липидах клеточной мембраны и проходят в клетку, а желчные кислоты остаются в полости кишечника. Внутри энтероцитов начинается активный синтез липопротеидов (хиломикрона) и липопротеидов очень низкой плотности. Затем эти вещества путем пассивного транспорта попадают в лимфатические сосуды. Уровень липидов, обладающих короткими и средними цепями, низкий. Поэтому они практически в неизменном виде путем простой диффузии всасываются внутрь энтероцитов, где под действием эстераз расщепляются на конечные продукты и принимают участие в синтезе липопротеидов. Такой способ транспорта требует меньших затрат, поэтому в некоторых случаях при перегрузке желудочно-кишечного тракта активируется данный вид всасывания.

Таким образом, процесс всасывания идет по механизму активного и пассивного транспорта.

107) Гормоны желудочно-кишечного тракта В стенках желудка и кишечника, как и в поджелудочной железе, размещаются особые секреторные клетки, которые производят низкомолекулярные полипептиды и гормоны. Гормоны желудочно-кишечного тракта имеют выраженный местный эффект, однако это не означает, что их физиологический эффект сводится только к местному воздействию: холецистокинин влияют и на активность структур головного мозга. В частности, установлена роль нейроальбумина и секретина в регуляции голода и сытости. Эти гормоны являются также сигналами передачи информации о степени переваривания пищи.Несмотря на выраженный местный эффект, гормоны желудочно-кишечного тракта хранятся в плазме крови сравнительно недолго (гастрин - от 3 до 90 мин, холецистокинин - 5-7 мин), вызывая за это время не только специфический эффект (секретин - стимуляцию секреции пищеварительных ферментов поджелудочной железой, гастрин - активацию секреции соляной кислоты слизистой желудка и т.д.), но и побочные неспецифические - гастрин, например, регулирует кроветворение, активность медьсодержащих ферментов и др.Бомбезин - полипептид, который стимулирует секрецию соляной кислоты желудком, сокращение желчного пузыря, секрецию поджелудочной железы и выделение гастрина. Он является местным рилизинг-фактором для кишечных гормонов.Вазоактивный интерстинальный пептид (ВИП) слизистой тонкого кишечника вызывает расслабление желчного пузыря, усиление сокращений мускулатуры тонкого кишечника.Виликинин - полипептид слизистой кишечника, который стимулирует сокращение ворсинок тонкой кишки. Этот пептид выделяется слизистой оболочкой верхней части тонкой кишки. Он ингибирует секрецию кислоты желудком и моторику желудка. Стимулирует кишечную секрецию и продукцию инсулина.Гастрин-рилизинг пептид производится С-клетками слизистой оболочки антрального и кардиального отделов желудка вследствие действия механических и химических раздражителей на участок пилоруса, тонкой и двенадцатиперстной кишки. Стимулирует деятельность желудочных желез, выделяющих пепсиноген, соляную кислоту и слизь в других железах, а также моторику ЖКТ. Регуляция выброса гастрина осуществляется блуждающим нервом. Еда попадая в ротовую полости, рефлекторно приводит к выделению гастрина, который в свою очередь стимулирует железы желудка путём высвобождения гистамина. Гастрин действует на другие железы желудка - стимулирует выработку ферментов в под. железе, усиливает отделение панкреатического сока, секрецию желчи, стимулирует моторику желудка, тонкой кишки, тормозит всасывание глюкозы, натрия, воды в тонком кишечнике, усиливает выделение калия. Локализация гастрина и его строение неизвестны.Секретин - нейтральный полипептид, выделяется Апуд-клетками, стимулирует секрецию воды и бикарбонатов поджелудочной железой при действии на слизистую оболочку механических и, главным образом, химических (особенно ионов Н+ ), раздражителей, секрецию инсулина и пепсиногена. Он тормозит выделение глюкагона, гастрина, моторику желудка и тощей кишки, а также эвакуации содержимого желудка за счёт расширения артериол слизистой антральной части.Бульбогастрон - полипептид, вырабатывается антральным отделом желудка, вмещает около 52 аминокислотных остатков, тормозит секрецию и моторику желудка. Холецистокинин - полипептид, который синтезируется клетками двенадцатиперстной кишки и верхних отделов тощей кишки. Стимулирует секрецию ферментов, инсулина и воды поджелудочной железой и сокращение гладкой мускулатуры желчного пузыря, кишечника и желудка, замедляя эвакуации содержимого желудка, усиливает выделение желчи, секреторные процессы бруннеровых желез. Холецистокинин ингибирует сокращение кардиального сфинктера и сфинктера общего желчного протока, всасывания воды, натрия, калия и хлора с полой и подвздошной кишки.Энтерогастрин - вещество, которое вырабатывает тонкая кишка, Этот гормон оказывает возбуждающее действие на секреторную и моторную деятельность желудка .Мотилин - полипептид С-клеток дна желудка. Усиливает моторику дна желудка без изменения секреции кислоты. Предполагают, что основная функция мотилина состоит в замедлении выведения пищи из желудка посредством дискоординации моторики желудка и двенадцатиперстной кишки.Энкефалины - самые маленькие представители группы пептидов с опиатоподобным действием, называемые эндорфинами. Двумя энкефалинами являются пептиды, состоящие из 5 аминокислот. Эти соединения отличаются лишь одной аминокислотой на С-конце - лейцин у лейэнкефалина и метионин в мет-энкефалина. Энкефалины подавляют секрецию соляной кислоты и моторику ЖКТ. Доказано, что энкефалины вызывают много центральных эффектов при системном введении. Причём эти эффекты возникают при использовании небольших доз. Считают, что энкефалины влияют на желудочную секрецию опосредованно через ЦНС и блуждающий нерв.

108) Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ.Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. заключается в , что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях восполняет энергозатраты организма. Синтез сложных специфичных веществ организма из простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом, Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Два этих процесса неразрывно связаны. 'Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТ.Ф и НАДФ. С их помощью энергия образующаяся в результате дис­симиляции передается для процессов ассимиляции. Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органел. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми. Т.е. не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин. Сос.белкового обмена оценивается по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего .азота больше, чем выделенного, это называется положительным .азотистым балансом. В организме происходит задержка или ретенция азота. + азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обес­печивает потребности организма называется белковым оптимумом. Мин, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.Жирами организма являются триглицериды, фосфолипиды и стерины. Они также имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органел. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме, потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Покрывая внутренние органы, жировая ткань выполняет и пластическую функцию. Например, околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды явля­ются источниками воды, потому что при окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир,. Содержащийся в его жировых клетках полипептид тормозит ре-синтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

109) Методы измерения энергетический баланса организма Соотношение между количеством энергии, поступившей в организм с пищей, и энергии, выделенной организмом во внешнюю среду называется энергетическим балансом .организма. Существует 2 метода определения выделяемой организмом энергии. 1. Прямая калориметрия. Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплообменных труб, в которых циркулирует и нагревается вода. 2. Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом (ДК). УС02 ДК=—У02 Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например в молекуле углеводов атомов кислорода много, Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1. В молекуле липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешанном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше 1 при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры. Меньше 0,7 он бывает при переходе жиров в углеводы. Исходя из дыхательного коэффициента рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ. Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов "Метатест-2", "Спиролит". величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент. Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г. Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а да азотсодержащих продуктов.

110) Основной обмен Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Основной обмен один из показателей интенсивности обмена веществ и энергии в организме; выражается количеством энергии, необходимой для поддержания жизни в состоянии полного физического и психического покоя, натощак, в условиях теплового комфорта. О. о.отражает энергетические траты организма, обеспечивающие постоянную деятельность сердца, почек, печени, дыхательной мускулатуры и некоторых других органов и тканей. Освобождаемая в ходе метаболизма тепловая энергия расходуется на поддержание постоянства температуры тела.

Основной обмен определяют в состоянии бодрствования (во время сна уровень О. о. понижается на 8—10%). Определение О.о. проводят в условиях мышечного покоя; не менее чем через 12—16 ч после последнего приема пищи, при исключении белков из пищевого рациона за 2—3 суток до момента определения О. о.; при внешней температуре комфорта, не вызывающей ощущения холода или жары (18—20°).

Величину О. о. обычно выражают количеством тепла в килокалориях (ккал)или в килоджоулях (кДж)в расчете на 1 кг массы тела или на 1 м2поверхности тела за 1 ч или за 1 сутки. Величина, или уровень, О. о. колеблется у различных людей и зависит от возраста, веса (массы) тела, пола и некоторых других факторов. В среднем величина основного обмена у мужчины весом 70 кг составляет около 1700 ккал в сутки (1 ккал на 1 кг веса в 1 ч). У женщин интенсивность О. о. ниже примерно на10—15%. У новорожденных величина О. о. составляет 46—54 ккал на 1 кг массы тела в сутки и возрастает в течение первых месяцев жизни, достигая максимума в конце первого — начале второго года. При этом интенсивность О. о. ребенка превышает О. о. взрослого человека в 1,5—2 раза. Затем интенсивность О. о. начинает постепенно уменьшаться, стабилизируясь в возрасте 20—40 лет. У пожилых людей О. о. снижается.

Если расчет интенсивности О. о.производить не на единицу веса, а на единицу площади, то выясняется, что индивидуальные различия величины О. о. менее значительны. На основании фактов,свидетельствующих о наличии закономерной связи между интенсивностью обмена веществ и величиной поверхности, немецкий физиолог Рубнер(М. Rubner) сформулировал «закон поверхности тела», согласно которому затраты энергии теплокровными животными пропорциональны величине поверхности тела. Вместе с тем установлено, что этот закон имеет относительное значение и позволяет проводить лишь ориентировочные расчеты высвобождения энергии в организме. Против абсолютного значения «закона поверхности» свидетельствует и тот факт, что интенсивность обмена веществ может значительно различаться у двух индивидуумов с одинаковой поверхностью тела. Уровень окислительных процессов определяется, т.о. не столько теплоотдачей с поверхности тела, сколько теплопродукцией тканей и зависит от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной и эндокринной систем.

Даже в том случае, когда соблюдаются все стандартные условия для определения О. о., интенсивность процессов обмена подвергается суточным колебаниям: она возрастает утром и снижается в ночной период (см. Биологические ритмы).Отмечены сезонные изменения О. о. у человека: повышение его весной и ранним летом и понижение поздней осенью и зимой. Сезонные изменения связаны не столько с температурными факторами, сколько с изменением двигательной активности,колебаниями гормональной активности и т.д. Потребление питательных веществ и их последующее переваривание повышают интенсивность процессов обмена, особенно в том случае, если питательные вещества имеют белковую природу. Такое влияние пищи на уровень обмена веществ и энергии носит название специфического динамического действия пищи. К изменению уровня О. о. ведут также продолжительное ограничение питания, избыточное потребление пищи, повышенное или недостаточное содержание в рационе отдельных питательных веществ.

Температура окружающей среды также влияет на интенсивность процессов О. о.: сдвиги в сторону охлаждения приводят к большему усилению обмена веществ, чем соответствующие сдвиги в сторону повышения температуры (при падении температуры воздуха на 10° уровень О. о.повышается на 2,5%).

Определение О. о. имеет большое значение в диагностике некоторых заболеваний. На основании результатов обследования большого числа здоровых людей установлена средняя норма О. о. — так называемый должный О. о. Должный О. о. (в ккал за 24 ч) принят в расчетах за 100%. Фактический О. о. выражается в процентах отклонения от должного в сторону повышения со знаком плюс, в сторону понижения — со знаком минус

Допустимое отклонение от должной величины колеблется от +10 до +15%. Отклонения в пределах от +15% до +30% считаются сомнительными,требуют контроля и наблюдения; от +30% до +50% относят к отклонениям средней тяжести; от +50% до +70% — к тяжелым, а свыше +70% — к очень тяжелым.Снижение обмена на 10% еще нельзя считать патологическим, При снижении на30—40% требуется лечение основного заболевания.

Для определения О. о. используют методы прямой и непрямой калориметрии. Необходимо учитывать возможность расхождения данных прямой и непрямой калориметрии, что связано с кратковременностью определения потребления кислорода. При более длительных определениях (порядка24 ч) результаты обоих методов должны, очевидно, совпадать. Искажение представления об О. о.может быть связано с тем, что калорическая ценность кислорода оказывается различной в зависимости от характера субстратов (белки, жиры или углеводы),преимущественно окисляющихся в организме в процессе газообмена. Величину О. о. можно ориентировочно определить с помощью специальных клинических формул (например, формул Рида, Гейла и др.).По формуле Рида процент отклонения О. о.равен: 75, умноженным на пульс, плюс разница систолического и диастолического артериального давления, умноженная на 0,74—72. По формуле Гейла процент отклонения О. о. равен: пульс плюс разница систолического и диастолического АД минус 111. Общими обязательными условиями при этом являются следующие: подсчет пульса, измерение АД должны осуществляться всегда только в стандартных условиях О. о.; клинические формулы неприменимы к больным с декомпенсированными заболеваниями сердца, почек и печени, гипертонической болезнью, мерцательной аритмией, пароксизмальной тахикардией, недостаточностью клапанов аорты и некоторыми другими тяжелыми заболеваниями и состояниями.

В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин 1550.

111) Общий обмен энергии Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически динамического действия пищи. Рабочая прибавка это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих: 1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут. 2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут. 3. Лица занятые частично механизированным трудом (шофера). 2500-3700 ккал/сут. . 1. Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут. Специфически динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%. Физиологические основы питания.

2. Режимы питания. В зависимости от возраста, пола, профессии потребление белков, жиров и углеводов должно составлять:

В зависимости от возраста, пола, проф.

потребление белков, жиров и углеводов должно составлять:

М 1-1У групп

ЖМУ групп

Белки

96-108 г

82-92 г77-102 г

Жиры

90-120 г

Углеводы

382-552 г

303-444 г

СПЕЦИФИЧЕСКОЕ ДИНАМИЧЕСКОЕ ДЕЙСТВИЕ ПИЩИ

Под специфическим динамическим действием пищи (СДДП) подразумевается усиление обмена веществ после приема пищи по сравнению с уровнем основного обмена. Примерно через 15-30 минут после приема пищи происходит повышение обмена энергии, достигая максимума через 3-6 часов, и сохраняется в течение 10-12 часов. Причем различные виды пищи по-разному влияют на это повышение. Жиры незначительно повышают обмен, а иногда и тормозят его. Углеводистая пища повышает его на 10- 20%, а белковая еще больше-до 40%. Чем вызвано такое большое повышение обмена энергии после приема белковой пищи? Для этого необходимо знать, сколько у взрослого человека расходуется пищевого белка на построение и замену изношенных тканей организма и сколько-на потребление энергии. В прошлом веке Рубнер сформулировал закон изодинамии, согласно которому пищевые вещества могут взаимозаменяться по своей энергетической ценности. Однако он имеет относительное значение, так как белки, выполняющие пластическую роль, не могут синтезироваться из других веществ. Это же касается незаменимых жирных кислот. Поэтому требуется питание сбалансированное по всем питательным веществам. Кроме того необходимо учитывать усвояемость пищи. Это соотношение всосавшихся и выделившихся с калом питательных веществ. Наиболее легко усваиваются животные продукты. Поэтому животный белок должен составлять не менее 50% суточного белкового рациона, а жиры не более 70% жирового.Под режимом питания подразумевается кратность приема пищи и распределение ее калорийности на каждый прием. При трехразовом питании на завтрак должно приходится 30% калорийности суточного рациона, обед 50%, ужин 20%. При более физиологичном четырехразовом, на завтрак 30%, обед 40%, полдник 10%, ужин 20%. Интервал между завтраком и обедом не более 5 часов, а ужин должен быть не менее чем за 3 часа до сна. Часы приема пищи должны быть постоянными.

112,113) Постоянство температуры организма как необходимое условие нормального протекания метаболических процессов. Пойкило- и гомойотермия. Физическая и хим. терморегуляция. Физические механизмы регуляции температуры тела. Терморецепторы. Центр терморегуляции. Гипотермия. Гипертермия. Филогенетически сложились два типа регуляции температуры тела. У холоднокровных или пойкилотермных организмов интенсивность обмена веществ небольшая, поэтому низка теплопродукция. Они неспособны поддерживать постоянство температуры тела и она зависит от температуры окружающей среды. Вредные сдвиги температуры компенсируются изменением поведения (зимняя спячка). У теплокровных животных интенсивность обменных процессов очень высока и имеются специальные механизмы терморегуляции. Поэтому они имеют независимый от окружающей температуры уровень активности. Изотермия обеспечивает высокую приспособляемость теплокровных. У человека суточные колебания температуры 36,5-36,9°С. Наиболее высока температура тела человека в 16 часов. Наименьшая в 4 часа. его организм очень чувствителен к изменениям температуры тела. При ее снижении до 27-3 0°С наблюдаются тяжелые нарушения всех функций, а при 25° наступает холодовая смерть (имеются сообщения о сохранении жизнеспособности при 18° С). Для крыс летальной является температура 12° С (специальные методы 1° С). При повышении температуры тела до 40° также возникают тяжелые нарушения. При 42° может наступить тепловая смерть. Для человека зона температурного комфорта 18-20°. Существуют и гетеротермные живые существа, которые могут временно снижать температуру тела (животные впадающие в спячку). Терморегуляция это совокупность физиологических процессов теплообразования и теплоотдачи, обеспечивающих поддержание нормальной температуры тела. В основе терморегуляции лежит баланс этих процессов. Регуляция температуры тела посредством изменения интенсивности обмена веществ называется химической терморегуляцией. Термогенез усиливает непроизвольная мышечной активность в виде дрожи, произвольная моторной активность. Наиболее активно теплообразование идет в работающих мышцах. При тяжелой физической работе оно возрастает на 500%. Образование тепла усиливается при интенсификации обменных процессов, это называется не дрожательным термогенезом и обеспечивается за счет бурого жира. Его клетки содержат много митохондрий и специальный пептид, стимулирующий распад липидов с выделением тепла. Т.е. происходит разобщение процессов окисления и фософрилирования. Теплоотдача служит для выделения избытка образующегося тепла и называется физической терморегуляцией. >'0на осуществляется посредством теплоизлучения, посредством которого выделяется 60% тепла, конвекции (15%), теплопроводности (3 °/о), испарения воды с поверхности тела и из легких (20%). Баланс процессов теплообразования и теплоотдачи обеспечивается нервным» и гуморальными механизмами. При отклонении температуры тела от нормальной величины, возбуждаются терморецепторы кожи, сосудах, внутренних органах, верхних дыхательных путях. Этими рецепторами являются отростки сенсорных нейронов, а также тонкие волокна типа С. Холодовых рецепторов в коже больше, чем тепловых и они расположены более поверхностно. Нервные импульсы от этих нейронов по спиноталамическим трактам поступают в гипоталамус и кору больших полушарий. Формируется ощущение холода или тепла. В заднем гипоталамусе и препоптической области переднего находится центр терморегуляции. Нейроны заднего, в основном обеспечивают химическую терморегуляцию. Переднего физическую. В этом центре имеется три типа нейронов. Первым являются термочувствительные нейроны. Они расположены в препоптической области и реагируют на изменение температуры крови проходящей через мозг. Такие же нейроны имеются в спинном и продолговатом мозге. Вторая группа, является интернейронами и получает информацию от температурных рецепторов и терморецепторных нейронов. Эти нейроны служат для поддержания установочной точки, т.е. определенной температуры тела. Одна часть таких нейронов получает информацию от холодовых, другая от тепловых периферических рецепторов и терморецепторных нейронов. Третий тип нейронов - эфферентные. Они находятся в заднем гипоталамусе и обеспечивают регуляцию механизмов теплообразования. Свои влияния на эффекторные механизмы, центр терморегуляции осуществляет через симпатическую и соматическую нервную системы, железы внутренней секреции. При повышении температуры тела возбуждаются тепловые рецепторы кожи, внутренних органов, сосудов и терморецепторные нейроны гипоталамуса. Импульсы от них поступают к интернейронам, а затем эффекторным. Эффекторными являются нейроны симпатических центров гипоталамуса. В результате их возбуждения активируются симпатические нервы, которые расширяют сосуды кожи и стимулируют потоотделение. При возбуждении холодовых рецепторов наблюдается обратная картина. Частота нервных импульсов идущих к кожным сосудам и потовым железам уменьшается, сосуды суживаются, потоотделение тормозится. Одновременно расширяются сосуды внутренних органов. Если это не приводит к восстановлению температурного гомеостаза, включаются другие механизмы. Во-первых, симпатические нервная система усиливает процессы катаболизма, а следовательно теплопродукцию. Выделяющийся из окончаний симпатических нервов норадреналин стимулирует процессы липолиза. Особую роль в этом играет бурый жир. Это явление называется не дрожательным термогенезом. Во-вторых, от нейронов заднего гипоталамуса начинают идти нервные импульсы к двигательным центрам среднего и продолговатого мозга. Они возбуждаются и активируют а-мотонейроны спинного мозга. Возникает непроизвольная мышечная активность в виде холодовой дрожи. Третий путь - это усиление произвольной двигательной активности. Большое значение имеет соответствующее изменение поведения, которое обеспечивается корой. Из гуморальных факторов наибольшее значение имеют адреналин, норадреналин и тиреоидные гормоны. Первые два гормона вызывают кратковременное повышение теплопродукции за счет усиления липолиза и глико-лиза. При адаптации к длительному охлаждению усиливается синтез тироксина и трийодтиронина. Они значительно повышают энергетический обмен и теплопро­дукцию посредством увеличения количества ферментов в митохондриях. Понижение температуры тела называется гипотермией, повышение гипертермией. Гипотермия возникает при переохлаждении. Гипотермия организма или мозга используется в клинике для продления жизнеспособности организма или мозга человека при проведении реанимационных мероприятий. Гипертермия возникает при тепловом ударе, когда температура повышается до 40-41°. Одним из нарушений механизмов терморегуляции является лихорадка. Она развивается в результате усиления теплообразования и снижения теплоотдачи. Теплоотдача падает из-за сужения периферических сосудов и уменьшения потоотделения. Теплообразование возрастает вследствие воздействия на центр терморегуляции гипоталамуса бактериального и лейкоцитарного пирогенов, являющихся липополисахаридами. Это воздействие сопровождается и лихорадочной дрожью. В период выздоровления нормальная температура восстанавливается за счет расширения сосудов кожи и проливного пота.