
- •Вопрос 20. Электрический ток. Плотность тока. Уравнение непрерывности.
- •Вопрос 21. Закон Ома в интегральной и дифференциальной форме. Сопротивление проводников.
- •Вопрос 22. Тепловое действие тока. Закон Джоуля – Ленца в дифференциальной и интегральной форме.
- •Вопрос 41. Плоская электромагнитная волна. Связь векторов напряженности электрического и магнитного поля.
- •Вопрос 42. Плотность и поток энергии электромагнитного поля.
- •Вопрос 4. Метод векторных диаграмм. Дифракция на круглом отверстии и диске.
- •Вопрос 8. Поляризация при отражении и преломлении света. Закон Брюстера. Двойное лучепреломление.
- •Вопрос 9. Интерференция поляризованного света.
- •1. Электрическое поле в вакууме. Закон Кулона. Закон сохранения заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Принцип суперпозиции. Силовые линии поля.
- •Электростатическое поле бесконечной проводящей плоскости
- •5. Электроемкость уединенного проводника. Пример вычисления емкости шарового проводника. Конденсаторы. Емкость конденсатора. Вычисление емкости плоского конденсатора, сферического конденсатора.
- •6. Диполь в однородном электрическом поле. Электрический дипольный момент. Момент сил, действующий на диполь в однородном электрическом поле.
- •8. Энергия системы зарядов. Энергия плоского конденсатора. Энергия электростатического поля. Объемная плотность энергии.
- •12. Магнитное взаимодействие токов. Сила Ампера. Вычисление силы взаимодействия двух прямолинейных проводников с током.
- •13. Действие магнитного поля на движущиеся заряды. Сила Лоренца. Движение заряженных частиц в электрическом и магнитном полях.
- •14. Контур с током в однородном и неоднородном магнитных полях. Магнитный момент контура с током.
- •15. Магнитный поток. Работа при перемещении контура с током в магнитном поле.
- •16. Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея. Правило Ленца. Генератор переменного тока, пример расчета эдс индукции для генератора переменного тока.
- •17. Явление самоиндукции и взаимной индукции. Индуктивность контура. Пример вычисления индуктивности соленоида. Эдс самоиндукции. Токи замыкания и размыкания цепи.
- •18. Природа магнетизма атома. Магнитный момент атома и его механический момент. Гиромагнитное отношение. Момент сил, действующий на атом в магнитном поле.
- •20. Энергия магнитного поля. Плотность энергии магнитного поля.
- •24. Переменный ток. Расчет реактивного сопротивления емкости, индуктивности. Закон Ома для переменного тока.
- •25. Уравнения Максвелла в интегральной и дифференциальной формах, их физический смысл. Вихревое электрическое поле. Ток смещения. Электромагнитное поле.
- •Оптическая разность хода.
- •18.1.2.1. Условия максимума и минимума на разность фаз δ
- •18.1.2.2. Оптическая разность хода
- •18.1.2.3. Условия максимума и минимума на оптическую разность хода
- •30. Интерференция при отражении от тонких пленок. Пример расчета интерференционной картины для плоскопараллельной пластинки.
- •31. Кольца Ньютона. Радиусы темных и светлых колец.
- •32. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Радиусы зон Френеля. Дифракция на круглом отверстии и непрозрачном диске.
- •34. Дифракционная решетка как спектральный прибор. Разрешающая способность дифракционной решетки. Угловая дисперсия.
- •35. Поляризация света. Степень поляризации. Закон Малюса.
- •36. Поляризация света при отражении и преломлении света на границе раздела двух сред.
Оптическая разность хода.
Вместо разности фаз
интерферирующих волн удобно ввести в
рассмотрение пропорциональную ей
величину
- оптическую разность хода, которая
отличается множителем
,
где
- длина световой волны.
Изменению
разности фаз на
соответствует изменение разности хода
на
.
В
вакууме оптическая разность хода в
отличие от разности фаз имеет наглядную
и
нтерпретацию.
Если две интерферирующие волны испускаются
одним источником света, то разность
хода - это геометрическая разность длин
путей, по которым два интерферирующих
луча от одной точки источника достигли
одной точки экрана.
Например, в оптической схеме опыта Юнга, изображенной на рис. 18, разность хода для точки P на экране находится по формуле:
.
В изотропной среде скорость света в n раз меньше, чем в вакууме, здесь n - показатель преломления среды. Частота света в среде и в вакууме одинакова, поэтому длина волны в среде в n раз меньше. В соответствии с соотношением вместо реального уменьшения длины волны можно рассматривать неизменную и соответствующее увеличение длины пути луча. С этой целью вводится понятие оптической длины пути, которая в n раз больше геометрической длины. Далее, употребляя термин "разность хода", всегда будем иметь в виду оптическую разность хода.
Заменяя разность фаз интерферирующих волн оптической разностью хода, получаем следующее выражение для интенсивности интерференционной картины:
.
Приемники света в оптическом диапазоне реагируют на интенсивность света, а не на напряженность электрического или магнитного полей. Поэтому измеряемые в опыте величины, ширина полос и видность, также могут быть выражены через интенсивность, а значит и через оптическую разность хода. Следовательно, понятие оптической разности хода позволяет свести оптическую задачу по интерференции к геометрической задаче отыскания разности хода.
Отметим,
что разность хода лучей можно отсчитывать
не только как разность длин путей от
источника до точки наблюдения, но и как
разность длин путей от двух точек любой
поверхности равной фазы волны до точки
наблюдения. При этом, конечно, две точки
на поверхности равной фазы - не произвольные
точки, а должны быть точками, через
которые реально проходят лучи, попадающие
в точку наблюдения. Так на рис. 18
,
поэтому две щели находятся на поверхности
равной фазы, и, следовательно, разность
хода можно найти по упрощенной формуле
.
Этот прием часто используется при
решении задач.
18.1.2.1. Условия максимума и минимума на разность фаз δ
18.1.2.2. Оптическая разность хода
Пусть для простоты, начальные фазы α1 и α2 интерферирующих волн равны нулю, тогда:
здесь λ0 = cT - длина световой волны в вакууме.
Оптической разностью хода называют величину:
.
Тогда:
.
18.1.2.3. Условия максимума и минимума на оптическую разность хода
Из (18.1.2.1.) и (18.1.2.2.):
П
осле
сокращения получим условия на Δ:
30. Интерференция при отражении от тонких пленок. Пример расчета интерференционной картины для плоскопараллельной пластинки.
Интерференция - физическое явление, наблюдаемое при сложении волн (световых, звуковых и т. п.), усиление волн в одних точках пространства и ослабление в других (или сложение двух или более волн, при котором амплитуда результирующей волны зависит от разности фаз исходных волн в данной точке пространства)
Пусть на плоскопараллельную прозрачную пленку (пластинку) с показателем преломления n и толщиной d под углом падает плоская монохроматическая волна (для простоты рассмотрим один луч).
На поверхности пленки в точке А волна частично отражается (луч 1- ) и частично преломляется (луч АВ). В точке В волна также частично отражается (луч ВС) и частично преломляется (луч 2- ). То же самое происходит в точке С.
Причем
преломленная волна (луч 1" ) накладывается
на волну непосредственно отраженную
от верхней поверхности (луч 1- ). Эти две
волны когерентны, если оптическая
разность хода
меньше
длины когерентности lког, и в этом
случае они интерферируют.
Оптическая разность хода двух волн =(AB+BC)n-(AD-/2),
где
/2 - потеря полуволны
при отражении луча 1- в точке А. Используя
закон преломления n1sin
= n2sin и учитывая,
что в рассматриваемом случае n1=1,
n2=n, можно показать, что
.(17)
В точке наблюдения на экране будет максимум, если m и минимум, если (2m+1)/2[см.(15),(16)].
Возможность
уменьшения вредного отражения света
вследствие интерференции в тонких
пленках широко используется в современных
оптических приборах. Для этого на
передние поверхности линз, призм наносят
тонкие пленки с показателем преломления
n=
и толщиной d, которая определяется из
условия минимума при интерференции
волн, отраженных от границ раздела сред
с n1 и n и n и n2
2dn=(2m+1)/2,
m=0,1,2-(18)
Минимальная толщина пленки соответствует m=0
d=/(4n)
Такая оптика получила название просветленной оптики.