
- •Введение § в.1. Назначение электрических машин и трансформаторов
- •§ В.2. Электрические машины — электромеханические преобразователи энергии
- •§ В.З. Классификация электрических машин
- •Трансформаторы
- •Глава 1 • Рабочий процесс трансформатора § 1.1. Назначение и области применения трансформаторов
- •§ 1.2. Принцип действия трансформаторов
- •§1.3. Устройство трансформаторов
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- •§ 1.7. Векторная диаграмма трансформатора
- •§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- •§ 1.9. Явления при намагничивании магнитопроводов трансформаторов
- •§ 1.10. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
- •§ 1.11. Опытное определение параметров схемы замещения трансформаторов
- •§ 1.12. Упрощенная векторная диаграмма трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •Контрольные вопросы
- •Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов § 2.1. Группы соединения обмоток
- •§ 2.2. Параллельная работа трансформаторов
- •Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы
- •§ 3.2. Автотрансформаторы
- •Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 4.2. Перенапряжения в трансформаторах и защита от перенапряжений
- •4.7. Начальное распределение напряжения по длине обмотки при заземленной (а) и изолированной (б) нейтралях
- •Глава 5. Трансформаторные устройства специального назначения § 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 5.5. Охлаждение трансформаторов
- •Контрольные вопросы
- •2 Раздел
- •Глава 6
- •§ 6.1. Принцип действия синхронного генератора
- •Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- •§ 6.2. Принцип действия асинхронного двигателя
- •Контрольные вопросы
- •Глава 7
- •§ 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статора
- •§ 7.2. Электродвижущая сила катушки
- •§ 7.3. Электродвижущая сила катушечной группы
- •§ 7.4. Электродвижущая сила обмотки статора
- •§ 7.5. Зубцовые гармоники эдс
- •Глава 8
- •§ 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазу
- •Если половину катушечных групп каждой фазной обмотки соединить последовательно в одну ветвь, а затем две ветви соединить параллельно, то получим последовательно –
- •§ 8.2. Трехфазная двухслойная обмотка с дробным числом пазов на полюс и фазу
- •Для этой обмотки эквивалентные параметры будут
- •§ 8.3. Однослойные обмотки статора
- •§ 8.4. Изоляция обмотки статора
- •Глава 9
- •§ 9.1. Магнитодвижущая сила сосредоточенной обмотки
- •§ 9.2. Магнитодвижущая сила распределенной обмотки
- •Например, амплитуда основной гармоники мдс
- •С учетом изложенного амплитуда мдс обмотки фазы статора
- •Мдс однофазной обмотки статора прямо пропорциональна переменному току в этой
- •§ 9.3. Магнитодвижущая сила трехфазной обмотки статора
- •§ 9.4. Круговое, эллиптическое и пульсирующее магнитные поля
- •§ 9.5. Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки
- •3 Раздел
- •Асинхронные машины
- •Однофазные и конденсаторные асинхронные двигатели
- •Глава 10
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •Глава 11
- •§11.1. Основные понятия
- •§ 11.2. Расчет магнитной цепи асинхронного двигателя
- •§ 11.3. Магнитные потоки рассеяния асинхронной машины
- •§ 11.4. Роль зубцов сердечника в наведении эдс и создании электромагнитного момента
- •Контрольные вопросы
- •Глава 12
- •§12.1. Уравнения напряжений асинхронного двигателя
- •§ 12.2. Уравнения мдс и токов асинхронного двигателя
- •§ 12.3. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- •Глава 13
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Результаты расчета
- •§ 13.3. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§ 13.5. Электромагнитные моменты от высших пространственных гармоник магнитного поля асинхронного двигателя
- •Контрольные вопросы
- •Глава 14
- •§ 14.1. Основные понятия
- •§ 14.2. Опыт холостого хода
- •Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют
- •§ 14.3. Опыт короткого замыкания
- •§ 14.4. Круговая диаграмма асинхронного двигателя
- •§ 14.5. Построение рабочих характеристик асинхронного двигателя по круговой диаграмме
- •§ 14.6. Аналитический метод расчета рабочих характеристик асинхронных двигателей
- •Коэффициент мощности двигателя
- •Глава 15
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.2. Пуск двигателей с короткозамкнутым ротором
- •§ 15.3. Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •Глава 16
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 16.2. Асинхронные конденсаторные двигатели
- •§ 16.3. Работа трехфазного асинхронного двигателя от однофазной сети
- •§ 16.4. Однофазный двигатель с экранированными полюсами
- •Глава 17
- •§ 17.1. Индукционный регулятор напряжения и фазорегулятор
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 17.3. Электрические машины синхронной связи
- •§ 17.4. Асинхронные исполнительные двигатели
- •§ 17.5. Линейные асинхронные двигатели
- •Глава 18
- •§18.1. Нагревание и охлаждение электрических машин
- •§ 18.2. Способы охлаждения электрических машин
- •§ 18.3. Конструктивные формы исполнения электрических машин
- •§ 18.4. Серии трехфазных асинхронных двигателей
- •Глава 21.
- •Параллельная работа синхронных генераторов.
- •§ 21.1. Включение генераторов на параллельную работу.
- •§ 21.2. Нагрузка генератора, включенного на параллельную работу.
- •§ 21.3. Угловые характеристики синхронного генератора
- •Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]
- •§ 21.4. Колебания синхронных генераторов
- •§ 21.5. Синхронизирующая способность синхронных машин
- •Удельный синхронизирующий момент
- •§ 21.6. U-образные характеристики синхронного генератора
- •§ 21.7. Переходные процессы в синхронных генераторах
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 22.4. Синхронный компенсатор
- •Глава 23 • Синхронные машины специального назначения
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§ 23.2. Синхронные реактивные двигатели
- •§ 23.3. Гистерезисные двигатели
- •§ 23.4. Шаговые двигатели
- •§ 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- •§ 23.6. Индукторные синхронные машины
- •Раздел 5 коллекторные машины
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •Глава 25
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- •§ 25.5. Выбор типа обмотки якоря
- •Глава 26
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •26.4. Магнитное поле машины и распределение магнитной индукции
- •§ 26.3. Учет размагничивающего влияния реакции якоря
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 26.5. Способы возбуждения машин постоянного тока
- •Глава 27
- •§ 27.1. Причины, вызывающие искрение на коллекторе
- •Из одной параллельной ветви в другую
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •Замедленной (а) и ускоренной (б) видах коммутации
- •§ 27.4. Способы улучшения коммутации
- •Зазоре машины с добавочными полюсами в
- •Генераторном (г) и двигательном (д) режимах
- •Добавочных полюсов
- •§ 27.5. Круговой огонь по коллектору
- •И расположение между щетками (б)
- •§ 27.6. Радиопомехи от коллекторных машин и способы их подавления
- •Контрольные вопросы
- •Глава 28
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 28.4. Генератор смешанного возбуждения
- •Глава 29
- •§ 29.1. Основные понятия
- •§ 29.2. Пуск двигателя
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.5. Режимы работы машины постоянного тока
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 29.9. Машины постоянного тока серий 4п и 2п
- •§ 29.10. Универсальные коллекторные двигатели
- •Глава 30
- •§ 30.1. Электромашинный усилитель
- •§ 30.2. Тахогенератор постоянного тока
- •§ 30.3. Бесконтактный двигатель постоянного тока
- •§ 30.4. Исполнительные двигатели постоянного тока
§ 21.3. Угловые характеристики синхронного генератора
Электромагнитная мощность неявнополюсного синхронного генератора при его параллельной работе с сетью
(21.7)
где - угол, на который продольная ось ротора смещена относительно продольной оси результирующего поля машины (рис. 21.4).
Электромагнитная мощность явнополюсного синхронного генератора
(21.8)
где
и
— синхронные индуктивные сопротивления
явнополюсной синхронной машины по
продольно и поперечной
осям соответственно, Ом.
Разделив выражения (21.7) и (21.8) на синхронную угловую скорость вращения , получим выражения электромагнитных моментов:
неявнополюсной синхронной машины
(21.9)
явнополюсной синхронной машины
(21.10)
где М — электромагнитный момент, Нм.
Анализ выражения (21.10) показывает, что электромагнитный момент явнополюсной машины имеет две составляющие: одна из них представляет собой основную составляющую электромагнитного момента
.
(21.11)
другая — реактивную составляющую момента
.
(21.12)
Основная
составляющая электромагнитного момента
явнополюсной
синхронной машины зависит не только от
напряжения
сети (
U1),
но и от ЭДС
,
наведенной
магнитным потоком
вращающегося ротора
в обмотке статора:
.
(21.13)
Это свидетельствует о том, что основная составляющая электромагнитного момента зависит от магнитного потока ротора: ≡ . Отсюда следует, что в машине с невозбужденным ротором ( = 0) основная составляющая момента = 0.
Реактивная
составляющая электромагнитного момента
не
зависит от магнитного потока полюсов
ротора. Для возникновения этой составляющей
достаточно двух условий: во-первых,
чтобы ротор
машины имел явновыраженные полюсы (
)
и, во-вторых,
чтобы к обмотке статора было подведено
напряжение сети (
≡
).
Подробнее физическая сущность реактивного
момента будет
изложена в § 23.2.
При
увеличении нагрузки синхронного
генератора, т. е. с ростом тока
I1
происходит увеличение угла
,
что ведет к изменению электромагнитной
мощности генератора и его электромагнитного
момента.
Зависимости
и
,
представленные графически,
называются
угловыми характеристиками синхронной
машины.
Рассмотрим
угловые характеристики электромагнитной
мощности
и электромагнитного момента
явнополюсного
синхронного генератора (рис. 21.5). Эти
характеристики построены
при условии постоянства напряжения
сети (
)
и магнитного потока возбуждения, т. е.
=
const.
Из выражений
(21.8) и (21.11) видим, что основная составляющая
электромагнитного
момента
и
соответствующая ей составляющая
электромагнитной мощности изменяются
пропорционально синусу
угла
(график 1),
а реактивная составляющая момента
(21.12) и
соответствующая ей составляющая
электромагнитной мощности изменяется
пропорционально синусу угла 2
(график
2).
Зависимость
результирующего момента
и электромагнитной мощности
от угла
определяется графиком 3,
полученным
сложением значений моментов
и
и соответствующих
им мощностей по ординатам.
Рис. 21.5. Угловая характеристика синхронного генератора.
Максимальное
значение электромагнитного момента
соответствует
критическому значению угла
.
Как
видно из результирующей угловой
характеристики (график
3),
при увеличении нагрузки синхронной
машины до значений,
соответствующих углу
≤
,
синхронная
машина работает устойчиво.
Объясняется это
тем, что при
≤
,
рост
нагрузки генератора
(увеличение
)
сопровождается
увеличением
электромагнитного
момента. В этом случае
любой установившейся
нагрузке соответствует равенство
вращающего
момента первичного двигателя
сумме
противодействующих
моментов, т. е.
.
В результате частота вращения ротора
остается неизменной, равной синхронной
частоте вращения.
При
нагрузке, соответствующей углу
>
,
электромагнитный момент Mя,
уменьшается, что ведет к нарушению
равенства вращающего и противодействующих
моментов. При этом избыточная
(неуравновешенная) часть вращающего
момента первичного
двигателя
вызывает увеличение частоты вращения
ротора, что ведет к нарушению условий
синхронизации (машина выходит из
синхронизма).
Электромагнитный момент, соответствующий критическому значению угла ( ), является максимальным Мmах.
Для явнополюсных синхронных машин = 60÷80 эл. град. Угол можно определить из формулы
(21.14)
Здесь
.
(21.15)
У
неявнополюсных
синхронных машин
= 0,
а поэтому
угловая характеристика представляет
собой синусоиду и угол
= 90°.
Отношение
максимального электромагнитного момента
Мmax
к
номинальному
называется перегрузочной
способностью синхронной машины
или коэффициентом статической
перегружаемости:
.
(21.16)
Пренебрегая реактивной составляющей момента, можно записать
,
(21.17)
т.е.
чем меньше угол
,
соответствующий номинальной нагрузке
синхронной машины, тем больше ее
перегрузочная способность.
Например, у турбогенератора
=
25 ÷ 30°, что соответствует
=
2,35÷2,0.
Пример
21.1.
Трехфазный синхронный генератор с явно
выраженными полюсами
на роторе (
=10) включен на параллельную работу с
сетью напряжением 6000 В частотой 50
Гц. Обмотка статора соединена звездой
и содержит в каждой
фазе
=
310 последовательных витков, обмоточный
коэффициент
= 0,92,
индуктивное
сопротивление рассеяния обмотки
= 10
Ом. Диаметр расточки D1
= 0,8 м, расчетная длина сердечника статора
li
=
0,28 м, воздушный зазор равномерный δ
= 2 мм, коэффициент полюсного перекрытия
=0,7, коэффициент воздушного
зазора kδ
= 1,3, коэффициент магнитного насыщения
= 1,1. Магнитный
поток ротора Ф =
0,058 Вб.
Требуется рассчитать значения электромагнитных моментов и построить графики , и М = f( ).
Решение. Полное индуктивное сопротивление реакции якоря по (20.19)
Ом
При
=
0,7 и равномерном зазоре коэффициенты
формы поля по (20.7) и (20.8):
=
0,958 и
=
0,442.