
- •Введение § в.1. Назначение электрических машин и трансформаторов
- •§ В.2. Электрические машины — электромеханические преобразователи энергии
- •§ В.З. Классификация электрических машин
- •Трансформаторы
- •Глава 1 • Рабочий процесс трансформатора § 1.1. Назначение и области применения трансформаторов
- •§ 1.2. Принцип действия трансформаторов
- •§1.3. Устройство трансформаторов
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- •§ 1.7. Векторная диаграмма трансформатора
- •§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- •§ 1.9. Явления при намагничивании магнитопроводов трансформаторов
- •§ 1.10. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
- •§ 1.11. Опытное определение параметров схемы замещения трансформаторов
- •§ 1.12. Упрощенная векторная диаграмма трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •Контрольные вопросы
- •Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов § 2.1. Группы соединения обмоток
- •§ 2.2. Параллельная работа трансформаторов
- •Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы
- •§ 3.2. Автотрансформаторы
- •Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 4.2. Перенапряжения в трансформаторах и защита от перенапряжений
- •4.7. Начальное распределение напряжения по длине обмотки при заземленной (а) и изолированной (б) нейтралях
- •Глава 5. Трансформаторные устройства специального назначения § 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 5.5. Охлаждение трансформаторов
- •Контрольные вопросы
- •2 Раздел
- •Глава 6
- •§ 6.1. Принцип действия синхронного генератора
- •Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- •§ 6.2. Принцип действия асинхронного двигателя
- •Контрольные вопросы
- •Глава 7
- •§ 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статора
- •§ 7.2. Электродвижущая сила катушки
- •§ 7.3. Электродвижущая сила катушечной группы
- •§ 7.4. Электродвижущая сила обмотки статора
- •§ 7.5. Зубцовые гармоники эдс
- •Глава 8
- •§ 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазу
- •Если половину катушечных групп каждой фазной обмотки соединить последовательно в одну ветвь, а затем две ветви соединить параллельно, то получим последовательно –
- •§ 8.2. Трехфазная двухслойная обмотка с дробным числом пазов на полюс и фазу
- •Для этой обмотки эквивалентные параметры будут
- •§ 8.3. Однослойные обмотки статора
- •§ 8.4. Изоляция обмотки статора
- •Глава 9
- •§ 9.1. Магнитодвижущая сила сосредоточенной обмотки
- •§ 9.2. Магнитодвижущая сила распределенной обмотки
- •Например, амплитуда основной гармоники мдс
- •С учетом изложенного амплитуда мдс обмотки фазы статора
- •Мдс однофазной обмотки статора прямо пропорциональна переменному току в этой
- •§ 9.3. Магнитодвижущая сила трехфазной обмотки статора
- •§ 9.4. Круговое, эллиптическое и пульсирующее магнитные поля
- •§ 9.5. Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки
- •3 Раздел
- •Асинхронные машины
- •Однофазные и конденсаторные асинхронные двигатели
- •Глава 10
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •Глава 11
- •§11.1. Основные понятия
- •§ 11.2. Расчет магнитной цепи асинхронного двигателя
- •§ 11.3. Магнитные потоки рассеяния асинхронной машины
- •§ 11.4. Роль зубцов сердечника в наведении эдс и создании электромагнитного момента
- •Контрольные вопросы
- •Глава 12
- •§12.1. Уравнения напряжений асинхронного двигателя
- •§ 12.2. Уравнения мдс и токов асинхронного двигателя
- •§ 12.3. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- •Глава 13
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Результаты расчета
- •§ 13.3. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§ 13.5. Электромагнитные моменты от высших пространственных гармоник магнитного поля асинхронного двигателя
- •Контрольные вопросы
- •Глава 14
- •§ 14.1. Основные понятия
- •§ 14.2. Опыт холостого хода
- •Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют
- •§ 14.3. Опыт короткого замыкания
- •§ 14.4. Круговая диаграмма асинхронного двигателя
- •§ 14.5. Построение рабочих характеристик асинхронного двигателя по круговой диаграмме
- •§ 14.6. Аналитический метод расчета рабочих характеристик асинхронных двигателей
- •Коэффициент мощности двигателя
- •Глава 15
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.2. Пуск двигателей с короткозамкнутым ротором
- •§ 15.3. Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •Глава 16
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 16.2. Асинхронные конденсаторные двигатели
- •§ 16.3. Работа трехфазного асинхронного двигателя от однофазной сети
- •§ 16.4. Однофазный двигатель с экранированными полюсами
- •Глава 17
- •§ 17.1. Индукционный регулятор напряжения и фазорегулятор
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 17.3. Электрические машины синхронной связи
- •§ 17.4. Асинхронные исполнительные двигатели
- •§ 17.5. Линейные асинхронные двигатели
- •Глава 18
- •§18.1. Нагревание и охлаждение электрических машин
- •§ 18.2. Способы охлаждения электрических машин
- •§ 18.3. Конструктивные формы исполнения электрических машин
- •§ 18.4. Серии трехфазных асинхронных двигателей
- •Глава 21.
- •Параллельная работа синхронных генераторов.
- •§ 21.1. Включение генераторов на параллельную работу.
- •§ 21.2. Нагрузка генератора, включенного на параллельную работу.
- •§ 21.3. Угловые характеристики синхронного генератора
- •Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]
- •§ 21.4. Колебания синхронных генераторов
- •§ 21.5. Синхронизирующая способность синхронных машин
- •Удельный синхронизирующий момент
- •§ 21.6. U-образные характеристики синхронного генератора
- •§ 21.7. Переходные процессы в синхронных генераторах
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 22.4. Синхронный компенсатор
- •Глава 23 • Синхронные машины специального назначения
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§ 23.2. Синхронные реактивные двигатели
- •§ 23.3. Гистерезисные двигатели
- •§ 23.4. Шаговые двигатели
- •§ 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- •§ 23.6. Индукторные синхронные машины
- •Раздел 5 коллекторные машины
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •Глава 25
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- •§ 25.5. Выбор типа обмотки якоря
- •Глава 26
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •26.4. Магнитное поле машины и распределение магнитной индукции
- •§ 26.3. Учет размагничивающего влияния реакции якоря
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 26.5. Способы возбуждения машин постоянного тока
- •Глава 27
- •§ 27.1. Причины, вызывающие искрение на коллекторе
- •Из одной параллельной ветви в другую
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •Замедленной (а) и ускоренной (б) видах коммутации
- •§ 27.4. Способы улучшения коммутации
- •Зазоре машины с добавочными полюсами в
- •Генераторном (г) и двигательном (д) режимах
- •Добавочных полюсов
- •§ 27.5. Круговой огонь по коллектору
- •И расположение между щетками (б)
- •§ 27.6. Радиопомехи от коллекторных машин и способы их подавления
- •Контрольные вопросы
- •Глава 28
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 28.4. Генератор смешанного возбуждения
- •Глава 29
- •§ 29.1. Основные понятия
- •§ 29.2. Пуск двигателя
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.5. Режимы работы машины постоянного тока
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 29.9. Машины постоянного тока серий 4п и 2п
- •§ 29.10. Универсальные коллекторные двигатели
- •Глава 30
- •§ 30.1. Электромашинный усилитель
- •§ 30.2. Тахогенератор постоянного тока
- •§ 30.3. Бесконтактный двигатель постоянного тока
- •§ 30.4. Исполнительные двигатели постоянного тока
§ 21.2. Нагрузка генератора, включенного на параллельную работу.
Обычно
совместно на одну сеть работают несколько
синхронных
генераторов и мощность любого из них
намного меньше суммарной
мощности всех остальных генераторов.
Будем считать, что синхронный
генератор подключают на параллельную
работу с
другими
генераторами, суммарная
мощность которых настолько
велика
по сравнению с мощностью
подключаемого генератора, что при любых
изменениях параметров
этого генератора напряжение
сети
и
ее частота
остаются
неизменными.
Рис. 21.3. Векторные диаграммы синхронного генератора, включённого на параллельную работу в сеть большой мощности:
а – при работе без нагрузки; б – при работе с нагрузкой
После
подключения генератора в
сеть при соблюдении всех условий
синхронизации его ЭДС
равна
по значению и противоположна по фазе
напряжению
сети (рис. 21.3,
а), поэтому ток в цепи
генератора
равен нулю, т. е. генератор работает
без нагрузки. Механическая мощность
приводного двигателя P1
в
этом случае полностью
затрачивается на покрытие потерь х. х.:
.
Отсутствие
тока в обмотке статора синхронного
генератора 0)
приводит к тому, что обмотка статора не
создает вращающегося
магнитного поля и в генераторе действует
лишь
магнитное поле
возбуждения, вращающееся вместе с
ротором с угловой частотой
,
но
не создающее электромагнитного момента.
Рис. 21.3. К понятию об электромагнитном моменте синхронного генератора.
Если
же увеличить вращающий момент приводного
двигателя
,
то ротор машины, получив некоторое
ускорение, сместится относительно
своего первоначального положения на
угол
в направлении
вращения. На такой же угол
окажется сдвинутым вектор
ЭДС генератора
относительно
своего положения, соответствующего
режиму х. х. генератора (рис. 21.3, б).
В
результате в цепи
статора появится результирующая ЭДС
,
которая
создаст в цепи обмотки статора генератора
ток I1.
Если
пренебречь активным сопротивлением
обмотки статора и считать сопротивление
этой обмотки чисто индуктивным, то ток
,
отстает по
фазе от
на угол 90° (рис. 21.3, б) и отстает по фазе
от ЭДС
на
угол
.
Ток I1 создает магнитное поле, вращающееся синхронно с ротором и создающее вместе с полем ротора результирующее магнитное поле синхронной машины. Ось этого результирующего поля d'—d' не совпадает с продольной осью полюсов ротора d – d: в синхронном генераторе ось полюсов ротора d - d опережает ось результирующего поля машины d’-d’ на угол (рис. 21.4, а).
Известно,
что разноименные магнитные полюсы
взаимно притягиваются,
поэтому между намагниченными полюсами
ротора и неявно
выраженными полюсами вращающегося поля
статора возникают
силы магнитного притяжения
(рис.
21.4, б). Вектор это и силы
на каждом полюсе ротора, направленный
под углом
к оси полюса,
имеет две составляющие:
- нормальная составляющая,
направленная по оси полюсов, и
—
тангенциальная
составляющая, направленная перпендикулярно
оси полюсов
ротора. Совокупность тангенциальных
составляющих F1
на
всех полюсах ротора создает на роторе
синхронного генератора электромагнитный
момент, направленный встречно вращающемуся
магнитному полю:
,
(21.1)
где D2 — диаметр ротора.
Из полученного выражения следует, что электромагнитный момент синхронной машины является синусоидальной функцией угла и может быть представлен выражением
,
(21.2)
где Мmax — максимальное значение электромагнитного момента, соответствующее значению угла = 90 эл. град.
Электромагнитный
момент М,
возникающий
на роторе генератора направлен
встречно вращающему моменту приводного
двигателя
,
т. е. он является тормозящим моментом.
На преодоление этого момента
затрачивается часть мощности приводного
двигателя, которая
представляет собой электромагнитную
мощность
,
(21.3)
где — угловая частота вращения ротора.
Таким
образом, с появлением тока I1
в обмотке статора синхронного
генератора, работающего параллельно с
сетью, генератор
получает электрическую нагрузку, а
приводной двигатель (турбина,
дизельный двигатель и т. п.) получает
дополнительную механическую
нагрузку. При этом механическая мощность
приводного
двигателя
расходуется
не только на покрытие потерь х. х.
генератора
,
но
и частично преобразуется в электромагнитную
мощность генератора Рэм,
т. е.
(21.4)
Следовательно, электромагнитная мощность синхронного ч тора представляет собой электрическую активную мощность, преобразованную из части механической мощности приводного двигателя:
Что
же касается активной мощности на выходе
синхронного генератора
,
отдаваемой
генератором в сеть, т. е.
то
она меньше электромагнитной мощности
Рэм
на
значение, равное
сумме электрических потерь в обмотке
статора
и добавочных
потерь
при
нагрузке
.
(21.5)
Следовательно,
мощность на выходе синхронного генератора,
(активная
нагрузка) при его параллельной работе
с сетью регулируется
изменением вращающего момента
приводного
двигателя:
,
где
— угловая синхронная скорость вращения
ротора
синхронной машины, рад/с.
Если
все слагаемые уравнения (21.4) разделить
на угловую частоту
,
то получим уравнение моментов
.
(21.6)
Из
этого уравнения следует, что вращающий
момент
,
развиваемый
приводным двигателем на валу генератора,
равен сумме противодействующих моментов:
момента х. х.
,
обусловленного
потерями
х. х.
и электромагнитного момента М,
обусловленного
нагрузкой
генератора.
Момент
х. х.
для данного генератора постоянен (
=
соnst),
поэтому нагрузка синхронного генератора
возможна лишь
за счет вращающего момента приводного
двигателя, когда его
значение превышает момент х. х., т. е. при
.