
- •Введение § в.1. Назначение электрических машин и трансформаторов
- •§ В.2. Электрические машины — электромеханические преобразователи энергии
- •§ В.З. Классификация электрических машин
- •Трансформаторы
- •Глава 1 • Рабочий процесс трансформатора § 1.1. Назначение и области применения трансформаторов
- •§ 1.2. Принцип действия трансформаторов
- •§1.3. Устройство трансформаторов
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- •§ 1.7. Векторная диаграмма трансформатора
- •§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- •§ 1.9. Явления при намагничивании магнитопроводов трансформаторов
- •§ 1.10. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
- •§ 1.11. Опытное определение параметров схемы замещения трансформаторов
- •§ 1.12. Упрощенная векторная диаграмма трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •Контрольные вопросы
- •Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов § 2.1. Группы соединения обмоток
- •§ 2.2. Параллельная работа трансформаторов
- •Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы
- •§ 3.2. Автотрансформаторы
- •Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 4.2. Перенапряжения в трансформаторах и защита от перенапряжений
- •4.7. Начальное распределение напряжения по длине обмотки при заземленной (а) и изолированной (б) нейтралях
- •Глава 5. Трансформаторные устройства специального назначения § 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 5.5. Охлаждение трансформаторов
- •Контрольные вопросы
- •2 Раздел
- •Глава 6
- •§ 6.1. Принцип действия синхронного генератора
- •Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- •§ 6.2. Принцип действия асинхронного двигателя
- •Контрольные вопросы
- •Глава 7
- •§ 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статора
- •§ 7.2. Электродвижущая сила катушки
- •§ 7.3. Электродвижущая сила катушечной группы
- •§ 7.4. Электродвижущая сила обмотки статора
- •§ 7.5. Зубцовые гармоники эдс
- •Глава 8
- •§ 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазу
- •Если половину катушечных групп каждой фазной обмотки соединить последовательно в одну ветвь, а затем две ветви соединить параллельно, то получим последовательно –
- •§ 8.2. Трехфазная двухслойная обмотка с дробным числом пазов на полюс и фазу
- •Для этой обмотки эквивалентные параметры будут
- •§ 8.3. Однослойные обмотки статора
- •§ 8.4. Изоляция обмотки статора
- •Глава 9
- •§ 9.1. Магнитодвижущая сила сосредоточенной обмотки
- •§ 9.2. Магнитодвижущая сила распределенной обмотки
- •Например, амплитуда основной гармоники мдс
- •С учетом изложенного амплитуда мдс обмотки фазы статора
- •Мдс однофазной обмотки статора прямо пропорциональна переменному току в этой
- •§ 9.3. Магнитодвижущая сила трехфазной обмотки статора
- •§ 9.4. Круговое, эллиптическое и пульсирующее магнитные поля
- •§ 9.5. Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки
- •3 Раздел
- •Асинхронные машины
- •Однофазные и конденсаторные асинхронные двигатели
- •Глава 10
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •Глава 11
- •§11.1. Основные понятия
- •§ 11.2. Расчет магнитной цепи асинхронного двигателя
- •§ 11.3. Магнитные потоки рассеяния асинхронной машины
- •§ 11.4. Роль зубцов сердечника в наведении эдс и создании электромагнитного момента
- •Контрольные вопросы
- •Глава 12
- •§12.1. Уравнения напряжений асинхронного двигателя
- •§ 12.2. Уравнения мдс и токов асинхронного двигателя
- •§ 12.3. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- •Глава 13
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Результаты расчета
- •§ 13.3. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§ 13.5. Электромагнитные моменты от высших пространственных гармоник магнитного поля асинхронного двигателя
- •Контрольные вопросы
- •Глава 14
- •§ 14.1. Основные понятия
- •§ 14.2. Опыт холостого хода
- •Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют
- •§ 14.3. Опыт короткого замыкания
- •§ 14.4. Круговая диаграмма асинхронного двигателя
- •§ 14.5. Построение рабочих характеристик асинхронного двигателя по круговой диаграмме
- •§ 14.6. Аналитический метод расчета рабочих характеристик асинхронных двигателей
- •Коэффициент мощности двигателя
- •Глава 15
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.2. Пуск двигателей с короткозамкнутым ротором
- •§ 15.3. Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •Глава 16
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 16.2. Асинхронные конденсаторные двигатели
- •§ 16.3. Работа трехфазного асинхронного двигателя от однофазной сети
- •§ 16.4. Однофазный двигатель с экранированными полюсами
- •Глава 17
- •§ 17.1. Индукционный регулятор напряжения и фазорегулятор
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 17.3. Электрические машины синхронной связи
- •§ 17.4. Асинхронные исполнительные двигатели
- •§ 17.5. Линейные асинхронные двигатели
- •Глава 18
- •§18.1. Нагревание и охлаждение электрических машин
- •§ 18.2. Способы охлаждения электрических машин
- •§ 18.3. Конструктивные формы исполнения электрических машин
- •§ 18.4. Серии трехфазных асинхронных двигателей
- •Глава 21.
- •Параллельная работа синхронных генераторов.
- •§ 21.1. Включение генераторов на параллельную работу.
- •§ 21.2. Нагрузка генератора, включенного на параллельную работу.
- •§ 21.3. Угловые характеристики синхронного генератора
- •Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]
- •§ 21.4. Колебания синхронных генераторов
- •§ 21.5. Синхронизирующая способность синхронных машин
- •Удельный синхронизирующий момент
- •§ 21.6. U-образные характеристики синхронного генератора
- •§ 21.7. Переходные процессы в синхронных генераторах
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 22.4. Синхронный компенсатор
- •Глава 23 • Синхронные машины специального назначения
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§ 23.2. Синхронные реактивные двигатели
- •§ 23.3. Гистерезисные двигатели
- •§ 23.4. Шаговые двигатели
- •§ 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- •§ 23.6. Индукторные синхронные машины
- •Раздел 5 коллекторные машины
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •Глава 25
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- •§ 25.5. Выбор типа обмотки якоря
- •Глава 26
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •26.4. Магнитное поле машины и распределение магнитной индукции
- •§ 26.3. Учет размагничивающего влияния реакции якоря
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 26.5. Способы возбуждения машин постоянного тока
- •Глава 27
- •§ 27.1. Причины, вызывающие искрение на коллекторе
- •Из одной параллельной ветви в другую
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •Замедленной (а) и ускоренной (б) видах коммутации
- •§ 27.4. Способы улучшения коммутации
- •Зазоре машины с добавочными полюсами в
- •Генераторном (г) и двигательном (д) режимах
- •Добавочных полюсов
- •§ 27.5. Круговой огонь по коллектору
- •И расположение между щетками (б)
- •§ 27.6. Радиопомехи от коллекторных машин и способы их подавления
- •Контрольные вопросы
- •Глава 28
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 28.4. Генератор смешанного возбуждения
- •Глава 29
- •§ 29.1. Основные понятия
- •§ 29.2. Пуск двигателя
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.5. Режимы работы машины постоянного тока
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 29.9. Машины постоянного тока серий 4п и 2п
- •§ 29.10. Универсальные коллекторные двигатели
- •Глава 30
- •§ 30.1. Электромашинный усилитель
- •§ 30.2. Тахогенератор постоянного тока
- •§ 30.3. Бесконтактный двигатель постоянного тока
- •§ 30.4. Исполнительные двигатели постоянного тока
§ 28.3. Генератор параллельного возбуждения
Принцип
самовозбуждения генератора постоянного
тока основан на том, что магнитная
система машины, будучи намагниченной,
сохраняет длительное время небольшой
магнитный поток остаточного
магнетизма сердечников полюсов и станины
(порядка
2—3% от полного потока). При вращении
якоря поток
Рис. 28.5. Принципиальная схема (а) и характеристика х.х. (б) генератора параллельного возбуждения
индуцирует
в якорной обмотке ЭДС
,
под
действием которой в обмотке
возбуждения возникает небольшой ток
.
Если
МДС обмотки
возбуждения
имеет
такое же направление, как и поток
,
то она увеличивает поток главных полюсов.
Это, в свою
очередь, вызывает увеличение ЭДС
генератора, отчего ток возбуждения
вновь увеличится. Так будет продолжаться
до тех пор,
пока напряжение генератора не будет
уравновешено падением
напряжения в цепи возбуждения, т. е.
.
На
рис. 28.5, а
показана
схема включения генератора параллельного
возбуждения, на рис. 28.5, б
—
характеристика х.х. генератора
(кривая 1)
и зависимость падения напряжения от
тока возбуждения
(прямая 2).
Точка пересечения А
соответствует
окончанию процесса самовозбуждения,
так как именно
в ней
.
Угол наклона прямой ОА к оси абсцисс определяется из треугольника ОАВ:
,
(28.10)
где
— масштаб тока (по оси абсцисс), А/мм;
—
масштаб напряжения
(по оси ординат), В/мм.
Из
(28.10) следует, что угол наклона прямой
к оси абсцисс прямо пропорционален
сопротивлению цепи возбуждения.
Однако при некотором значении сопротивления
реостата
сопротивление
,
достигает значения, при котором
зависимость
становится касательной к прямолинейной
части характеристики
х.х. (прямая 3).
В
этих условиях генератор не самовозбуждается.
Сопротивление цепи возбуждения, при
которой прекращается самовозбуждение
генератора, называют критическим
сопротивлением,
.
Следует
отметить, что самовозбуждение
генератора возможно лишь при частоте
вращения, превышающей критическую
.
Это условие вытекает из характеристики
самовозбуждения генератора
(рис.
28.6), представляющей собой
зависимость напряжения генератора
в режиме х.х. от частоты вращения
при неизменном сопротивлении цепи
возбуждения, т. е.
при
.
Рис. 28.6. Характеристика самовозбуждения
Анализ
характеристики самовозбуждения
показывает, что при
увеличение
частоты вращения якоря генератора
сопровождается незначительным
увеличением напряжения, так как процесса
самовозбуждения
нет и появление напряжения на выходе
генератора обусловлено
лишь остаточным намагничиванием
магнитной цепи генератора.
Процесс самовозбуждения начинается
при
.
В
этом
случае увеличение частоты вращения
сопровождается резким ростом
напряжения
.
Однако
при частоте вращения, близкой к
номинальной, рост напряжения несколько
замедляется, что объясняется
магнитным насыщением генератора.
Критическая частота вращения
зависит от сопротивления цепи возбуждения
и с ростом последнего увеличивается.
Таким образом, самовозбуждение генераторов постоянного тока возможно при соблюдении следующих условий: а) магнитная система машины должна обладать остаточным магнетизмом; б) присоединение обмотки возбуждения должно быть таким, чтобы МДС обмотки совпадала по направлению с потоком остаточного магнетизма ; в) сопротивление цепи возбуждения должно быть меньше критического; г) частота вращения якоря должна быть больше критической.
Так как генератор параллельного возбуждения самовозбуждается лишь в одном направлении, то и характеристика х.х. этого генератора может быть снята только для одного квадранта осей координат.
Нагрузочная и регулировочная характеристики генератора параллельного возбуждения практически не отличаются от соответствующих характеристик генератора независимого возбуждения.
Внешняя
характеристика генератора
параллельного возбуждения 1
(рис.
28.7) менее жесткая, чем у генератора
независимого возбуждения.
Объясняется это тем, что в генераторе
параллельного
возбуждения помимо причин, вызывающих
уменьшение напряжения в генераторе
независимого возбуждения (реакция якоря
и
падение напряжения в цепи якоря),
действует еще и третья причина —
уменьшение тока возбуждения, вызванное
снижением напряжения
от действия первых двух причин. Этим же
объясняется и
то, что при постепенном уменьшении
сопротивления нагрузки
ток увеличивается лишь
до критического значения
,
а затем при дальнейшем
уменьшении сопротивления нагрузки
ток начинает уменьшаться. Наконец, ток
нагрузки при коротком замыкании
.
Дело в том, что с
увеличением тока усиливается
размагничивание генератора
(усиление реакции якоря и
уменьшение тока возбуждения),
машина переходит в ненасыщенное
состояние,
при котором
даже небольшое уменьшение сопротивления
нагрузки вызывает резкое уменьшение
ЭДС машины (см. рис. 28.5, б).
Так
как
ток определяется напряжением на выводах
генератора
и
сопротивлением
нагрузки
,
т. е.
,
то
при токах нагрузки
,
когда напряжение генератора уменьшается
медленнее,
чем убывает сопротивление нагрузки,
происходит рост тока
нагрузки. После того как
,
дальнейшее уменьшение
сопровождается
уменьшением тока нагрузки, так как в
этом случае
напряжение
убывает
быстрее, чем уменьшается сопротивление
нагрузки
.
Рис. 28.7. Внешняя характеристика генератора параллельного возбуждения
Таким
образом, короткое замыкание, вызванное
медленным уменьшением сопротивления
нагрузки, не опасно для генератора
параллельного
возбуждения. Но при внезапном к.з.
магнитная система
генератора не успевает размагнититься
и ток
достигает опасных
для машины значений
(кривая 2).
При таком
резком возрастании тока нагрузки на
валу генератора возникает значительный
тормозящий момент [см. (25.24)], а на
коллекторе
появляется сильное искрение, переходящее
в круговой огонь. Поэтому необходимо
защищать генератор от перегрузки и к.з.
посредством
плавких предохранителей или же применением
релейной
защиты.
Генераторы параллельного возбуждения широко применяют в установках постоянного тока, так как отсутствие возбудителя выгодно отличает эти генераторы от генераторов независимого возбуждения. Номинальное изменение напряжения генератора параллельного возбуждения [см. (28.9)] составляет 10—30%.