- •Предисловие
- •Введение
- •Часть первая глава 1 теоретические основы информатики
- •Введение
- •§ 1. Информатика как наука и как вид практической деятельности
- •1.1. История развития информатики
- •1.2. Информатика как единство науки и технологии
- •1.3. Структура современной информатики
- •1.4. Место информатики в системе наук
- •1.5. Социальные аспекты информатики
- •1.6. Правовые аспекты информатики
- •1.7. Этические аспекты информатики
- •Контрольные вопросы
- •§ 2. Информация, ее виды и свойства
- •2.1. Различные уровни представлений об информации
- •2.2. Непрерывная и дискретная информация
- •2.3. Единицы количества информации: вероятностный и объемный подходы
- •Вероятностный подход
- •Объемный подход
- •2.4. Информация: более широкий взгляд
- •2.5. Информация и физический мир
- •§ 3. Системы счисления
- •3.1. Позиционные системы счисления
- •3.2. Двоичная система счисления
- •3.3. Восьмеричная и шестнадцатиричная системы счисления
- •§ 4. Кодирование информации.
- •4.1. Абстрактный алфавит
- •4.2. Кодирование и декодирование
- •4.3. Понятие о теоремах шеннона
- •4.4. Международные системы байтового кодирования
- •§ 5. Элементы теории графов
- •5.1. Основные понятия
- •5.2. Представление графов
- •§ 6. Алгоритм и его свойства
- •6.1. Различные подходы к понятию «алгоритм»
- •6.2. Понятие исполнителя алгоритма
- •6.3. Графическое представление алгоритмов
- •6.4. Свойства алгоритмов
- •6.5. Понятие алгоритмического языка
- •Контрольные вопросы
- •§7. Формализация понятия «алгоритм»
- •7.1. Постановка проблемы
- •7.2. Машина поста
- •73. Машина тьюринга
- •7.4. Нормальные алгоритмы маркова
- •7.5. Рекурсивные функции
- •Контрольные вопросы и задания
- •§ 8. Принципы разработки алгоритмов и программ для решения прикладных задач
- •8.1. Операциональный подход
- •8.2. Структурный подход
- •8.3. Новейшие методологии разработки программ для эвм
- •Контрольные вопросы и задания
- •§ 9. Структуры данных
- •9.1. Данные и их обработка
- •9.2.Простые (неструктурированные) типы данных
- •9.3. Структурированные типы данных
- •Контрольные вопросы и задания
- •§ 10. Понятие об информационном моделировании
- •10.1. Моделирование как метод решения прикладных задач
- •10.2. Основные понятия информационного моделирования
- •10.3. Связи между объектами
- •Контрольные вопросы и задания
- •§ 11. Некоторые кибернетические аспекты информатики
- •11.1. Предмет кибернетики
- •11.2. Управляемые системы
- •11.3. Функции человека и машины в системах управления
- •Контрольные вопросы и задания
- •§ 12. Понятие искусственного интеллекта
- •12.1. Направления исследований и разработок в области систем искусственного интеллекта
- •12.2. Представление знаний в системах искусственного интеллекта
- •12.3. Моделирование рассуждений
- •12.4. Интеллектуальный интерфейс информационной системы
- •12.5. Структура современной системы решения прикладных задач
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 1
- •Глава 2программное обеспечение эвм
- •Введение
- •§ 1. Операционные системы
- •1.1. Назначение и основные функции операционных систем
- •1.2. Понятие файловой системы
- •1.3. Операционные системы для компьютеров типаibmpc
- •1.4. Оболочки операционных систем
- •Контрольные вопросы и задания
- •§ 2. Понятие о системе программирования
- •2.1. Основные функции и компоненты
- •2.2. Трансляция программ и сопутствующие процессы
- •Контрольные вопросы
- •§3. Прикладное программное обеспечение общего назначения
- •3.1. Классификация
- •3.2. Инструментальные программные средства общего назначения
- •3.3. Инструментальные программные средства специального назначения
- •3.4. Программные средства профессионального уровня
- •3.5. Организация «меню» в программных системах
- •Контрольные вопросы ч задания
- •§ 4. Системы обработки текстов
- •4.1. Элементы издательского дела
- •4.2. Текстовые редакторы
- •4.3. Издательские системы Общая характеристика
- •Настольная издательская система ТеХ
- •§ 5. Системы компьютерной графики
- •5.1. Принципы формирования изображений на экране
- •5.2. Изобразительная графика
- •5.3. Графические редакторы
- •5.4. Деловая графика
- •5.5. Инженерная графика
- •5.6.Научная графика
- •Контрольные вопросы и упражнения
- •§ 6. Базы данных и системы управления базами данных
- •6.1. Понятие информационной системы
- •6.2. Виды структур данных
- •6.3. Виды баз данных
- •6.4. Состав и функции систем управления базами данных
- •6.5.Примеры систем управления базами данных
- •Контрольные вопросы и задания
- •§ 7. Электронные таблицы
- •7.1. Назначение и основные функции табличных процессоров
- •7.2. Электронные таблицыsupercalc
- •7.3. Электронные таблицыexcel
- •§8. Интегрированные программные средства
- •8.1. Принципы построения интегрированных программных систем
- •8.2. Интегрированный пакет ms-works
- •§ 9. Экспертные системы
- •Контрольные вопросы и задания
- •§ 10. Инструментальные программные средства для решения прикладных математических задач
- •10.1. Назначение программ
- •10.2. Пакетmathcad
- •10.3. Система аналитических преобразованийreduce
- •§ 11. Компьютерное тестирование
- •11.1. Технология проектирования компьютерных тестов предметной области
- •Оценка соответствия
- •11.2. Типы компьютерных тестов
- •11.3. Инструментальные тестовые оболочки
- •11.4. Пример теста по школьному курсу информатики
- •§12. Компьютерные вирусы
- •12.1. Что такое компьютерный вирус
- •12.2. Разновидности компьютерных вирусов
- •12.3. Антивирусные средства
- •Контрольные вопросы и задания
- •§ 13. Компьютерные игры
- •13.1. Виды и назначение компьютерных игр
- •13.2. Обзор компьютерных игр
- •Контрольные вопросы
- •Глава 3 языки и методы программирования
- •Введение
- •§ 1. История развития языков программирования
- •§2. Языки программирования высокого уровня
- •2.1. Понятие о языках программирования высокого уровня
- •2.2. Метаязыки описания языков программирования
- •23. Грамматика языков программирования
- •§3. Паскаль как язык структурно-ориентированного программирования
- •3.1. Введение
- •Контрольные вопросы
- •3.2. Основные конструкции языка
- •Контрольные вопросы
- •3.3. Структуры данных
- •3.4. Процедуры и функции
- •3.5. Работа с файлами
- •3.6. Динамические информационные структуры
- •Контрольные вопросы
- •3.7. Работа с графикой
- •Var gd, gm: integer; {переменные gd и gm определяют драйвер и режим}
- •Контрольные вопросы и задания
- •3.8. Турбо-оболочки. Версии паскаля
- •Контрольные вопросы
- •3.9. Руководство пользователю турбо-паскаля
- •§4. Методы и искусство программирования
- •4.1. Проектирование программ
- •Контрольные вопросы и задания
- •4.2. Основные принципы разработки и анализа алгоритмов
- •Задания
- •4.3. Методы построения алгоритмов, ориентированные на структуры данных
- •Контрольные задания
- •4.4. Рекурсивные алгоритмы
- •Контрольные задания
- •4.5. Важнейшие невычислительные алгоритмы (поиск и сортировка)
- •If f then write('найден элемент на ',m, ' месте') else write('такого элемента в массиве нет ');
- •Контрольные вопросы и задания
- •§ 5. Бейсик как язык операционально-проблемно-ориентированного программирования
- •5.1. Введение в бейсик
- •Контрольные вопросы
- •5.2. Базовые операторы
- •Контрольные вопросы ч задания
- •5.3. Музыкальные возможности
- •Контрольные вопросы и задания
- •5.4. Графические возможности
- •Контрольные вопросы и задания
- •5.5. Обработка символьной информации
- •Контрольные вопросы и задания
- •5.6. Подпрограммы
- •Контрольные вопросы
- •5.7. Работа с файлами
- •5.8. Средства и методы организации диалога
- •Контрольные задания
- •5.9. Версии бейсика
- •5.10. Бейсик и паскаль
- •§ 6. Введение в язык программирования си
- •6.1. Общая характеристика языка и пример программы на си
- •6.2. Элементы си: алфавит, идентификаторы, литералы, служебные слова
- •6.3. Типы данных и операции в языке си. Выражения
- •6.4. Операторы. Управляющие конструкции языка
- •6.5. Структура программы на си. Понятие о функциях
- •6.6. Классы памяти
- •6.7. Функции вводa-вывода
- •6.8. Директивы препроцессора
- •6.9. Си и паскаль
- •§ 7. Основы логического программирования на языке пролог
- •7.1. Общие сведения
- •7.2. Алгоритм выполнения программ на прологе
- •7.3. Рекурсия
- •7.4. Предикат отсечения и управление логическим выводом в программах
- •7.5. Обработка списков
- •7.6. Решение логических задач на прологе
- •Контрольные вопросы и задания
- •§ 8. Введение в функциональное программирование на языке лисп
- •8.1. Назначение и общая характеристика языка
- •8.2. Основные элементы программы на лиспе. Списки
- •8.3. Функции
- •8.4. Формы. Управляющие конструкции в лисп-программе
- •8.5. Рекурсия и цикл в программах на лиспе
- •8.6. Ввод-вывод данных
- •8.7. Пример программирования на лиспе
- •8.8. Свойства символов
- •Контрольные вопросы и задания
- •§9. Введение в объектно-ориентированное программирование
- •9.1. Основные положения
- •9.2. Основы объектного программирования в системе турбо-паскаль
- •9.3. Оболочкаturbo-vision
- •9.4.*Среда объектного визуального программированияdelphi
- •9.8. Система объектного программированияsmalltalk
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 3
- •Часть вторая глава 4 вычислительная техника
- •Введение
- •§ 1. История развития вычислительной техники
- •Начальный этап развития вычислительной техники
- •Начало современной истории электронной вычислительной техники
- •Поколения эвм
- •1.4. Персональные компьютеры
- •1.5. И не только персональные компьютеры...
- •1.6. Что впереди?
- •Контрольные вопросы
- •§2. Архитектура эвм
- •2.1. О понятии «архитектура эвм»
- •1.2. Классическая архитектура эвм II принципы фон неймана
- •2.3. Совершенствование и развитие внутренней структуры эвм
- •2.4. Основной цикл работы эвм
- •2.5. Система команд эвм и способы обращения к данным
- •Контрольные вопросы
- •§3. Архитектура микропроцессоров
- •3.1. История развития микропроцессоров
- •3.3. Внутренняя организация микропроцессора
- •3.3. Работа микропроцессора с памятью. Методы адресации
- •3.4. Форматы данных
- •3.5. Обработка прерываний
- •3.6. Работа микропроцессора с внешними устройствами
- •3.7. Пример: система команд процессоров семействаpdp
- •Контрольные вопросы и задания
- •§4. Учебная модель микрокомпьютера
- •4.1. Структура учебного микрокомпьютера
- •4.2. Система команд
- •4.3. Адресация данных
- •4.4.Работа с внешними устройствами
- •4.5. Примеры программ
- •4.6. Некоторые справочные данные по е-97
- •Контрольные вопросы и задания
- •§ 5. Внешние устройства эвм: физические принципы и характеристики
- •5.1. Внешние запоминающие устройства
- •5.2. Устройства ввода информации
- •5.3. Устройства вывода информации
- •Контрольные вопросы и задания
- •§ 6. Логические основы функционирования эвм
- •6.1. Логика высказываний. Элементарные логические функции
- •6.2. Схемная реализация элементарных логических операций. Типовые логические узлы
- •63. Пример электронной реализации логического элемента
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 4
- •Глава 5 компьютерные сети и телекоммуникации введение
- •§ 1. Локальные сети
- •1.1. Аппаратные средства
- •1.2. Конфигурации локальных сетей и организация обмена информацией
- •1.3. Локальные сети учебного назначения
- •Контрольные вопросы
- •§2. Операционные системы локальных сетей
- •Контрольные вопросы ч задания
- •§3. Глобальные сети
- •3.1. Общие принципы организации
- •3.2. Аппаратные средства и протоколы обмена информацией
- •3.3. Электронная почта
- •3.4.1. Адресация и виды информации в Internet
- •3.4.2. Доступ к информации в Internet
- •3.4.3. Язык разметки гипертекстов html
- •3.4.4. Программа-оболочка Internet Explorer
- •3.4.5. Другие информационные системы в Internet
- •§ 4. Представление об операционной системеunix
- •§ 5. Использование компьютерных сетей в образовании
- •5.1. Телекоммуникации как средство образовательных информационных технологий
- •5.2. Персональный обмен сообщениями
- •5.3. Информационное обеспечение
- •5.4. Совместное решение задач
- •Глава 6 информационные системы введение
- •§ 1. Банки информации
- •1.1. Банки данных
- •1.2. Банки документов
- •1.3. Банк педагогической информации
- •§ 2. Базы данных в структуре информационных систем
- •2.1. Основные понятия
- •2.2. Проектирование баз данных
- •2.3. Представление об языках управления реляционными базами данных типАdBase
- •2.3.1. Основные элементы субд типа dBase
- •2.3.2. Создание структуры файлов базы данных
- •2.3.3. Командный язык субд
- •2.3.4. Ввод данных в базу и редактирование
- •2.3.5. Дополнительные операции
- •2.3.6. Организация системы меню
- •2.3.7. Пример создания информационной системы с помощью субд типа dBase
- •§ 3. Автоматизированные информационные системы
- •3.1. Автоматизированные системы управления
- •3.2. Информационные системы управления
- •3.2.1. Общие принципы
- •3.2.2. Информационные системы управления в образовании
- •3.3. Автоматизированные системы научных исследований
- •3.4. Системы автоматизированного проектирования
- •3.5. Геоинформационные системы
- •Контрольные вопросы
- •§4. Экспертные системы
- •Контрольные вопросы и задания
- •§ 5. Компьютерные обучающие системы
- •5.1. Основные принципы новых информационных технологий обучения
- •5.2. Типы обучающих программ
- •5.3. Компьютерное тестирование
- •5.4. Перспективные исследования в области компьютерного обучения
- •Глава 7 компьютерное математическое моделирование введение
- •§ 1. О разновидностях моделирования
- •§2. Понятие о компьютерном математическом моделировании
- •2.1. Математическое моделирование и компьютеры
- •2.2. Этапы и цели компьютерного математического моделирования
- •2.3. Классификация математических моделей
- •2.4. Некоторые приемы программирования
- •§3. Моделирование физических процессов
- •3.1. Физика и моделирование
- •3.2. Свободное падение тела с учетом сопротивления среды
- •3.3. Движение тела, брошенного под углом к горизонту. Законы подобия
- •3.4. Движение тела с переменной массой: взлет ракеты
- •3.5. Движение небесных тел
- •3.6. Движение заряженных частиц
- •3.7. Колебания математического маятника
- •3.8. Моделирование явлений и процессов в приближении сплошной среды
- •3.9. Моделирование процесса теплопроводности
- •Контрольные вопросы и задания
- •§ 4. Компьютерное моделирование в экологии
- •4.1. Экология и моделирование
- •4.2. Модели внутривидовой конкуренции
- •4.3. Логистическая модель межвидовой конкуренции
- •4.4. Динамика численности популяций хищника и жертвы
- •4.5. Имитационное моделирование динамики популяций
- •Контрольные вопросы и задания
- •§5. Глобальные модели развития человечества
- •§ 6. Моделирование случайных процессов
- •6.1. Техника стохастического моделирования
- •6.2.Моделирование случайных процессов в системах массового обслуживания
- •6.3. Различные примеры моделирования случайных процессов
- •Контрольные вопросы и задания
- •§7. Компьютерное математическое моделирование в экономике
- •7.1. Постановка зaдaчи линейного программирования
- •7.2. Симплекс-метод
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 7
- •Содержание
- •§ 6. Введение в язык программирования си 306
- •§ 4. Компьютерное моделирование в экологии 641
- •§5. Глобальные модели развития человечества 656
- •§ 6. Моделирование случайных процессов 660
- •§7. Компьютерное математическое моделирование в экономике 675
§7. Компьютерное математическое моделирование в экономике
7.1. Постановка зaдaчи линейного программирования
В последние годы мы особенно отчетливо ощутили, что нет ничего важнее для общества, чем здоровая экономика Научное исследование основ функционирования экономики - сложная и интересная деятельность. Математические методы в ней играют возрастающую с каждым десятилетием роль, а реализация возникающих при этом математических моделей и получение практически важных результатов невозможны без ЭВМ.
В данном параграфе рассматривается лишь один из разделов - оптимальное планирование - и внутри него одна из моделей, так называемое, линейное программирование. Это связано с относительной простотой и ясностью как содержательной постановки соответствующих задач, так и методов решения. О таких интересных, но более сложных проблемах, как выпуклое программирование, динамическое программирование, теория игр мы лишь упомянем, отсылая читателей за подробностями к специальной литературе. Отметим еще, что термин «программирование» в названии этих разделов теории оптимального планирования весьма условен, связан с историческими обстоятельствами и к программированию в общепринятом сейчас смысле прямого отношения не имеет.
Общеизвестно, сколь важно для решения экономических задач планирование -как при рыночной, так и при плановой экономике. Обычно для решения экономической проблемы существует много способов (стратегий), отнюдь не равноценных по затратам финансов, людских ресурсов, времени исполнения, а также по достигаемым результатам. Наилучший из способов (по отношению к выбранному критерию - одному или нескольким) называют оптимальным. Приведем простейший пример такого рода задач.
Пример 1.На некотором предприятии могут выпускать изделия двух видов (например, мотоциклы и велосипеды). В силу ограниченности возможностей сборочного цеха в нем могут собирать за день либо 25 мотоциклов (если не собирать вообще велосипеды), либо 100 велосипедов (если не собирать вообще мотоциклы), либо какую-нибудь комбинацию тех и других, определяемою приемлемыми трудозатратами. Склад может принять не более 70 изделий любого вида в сутки. Известно, что мотоцикл стоит в 2 раза дороже велосипеда. Требуется найти такой план выпуска продукции, который обеспечил бы предприятию наибольшею выручку.
Такого рода задачи возникают повседневно в огромном количестве, но в реальности число изделий гораздо больше двух, да и дополнительных условий тоже больше. Решить подобную задачу путем перебора всех мыслимых вариантов часто невозможно даже на ЭВМ. В нашем примере, однако, в ЭВМ нет необходимости -задача решается очень легко.
Обозначим число выпускаемых за день мотоциклов х,велосипедов- у.Пустьτ1 -время (в часах), уходящее на производство одного мотоцикла, аτ2- одного велосипеда. Из условия задачи следует, чтоτ1= 4τ2. Если завод работает круглосуточно, то, очевидно, при одновременном выпуске обоих изделий
Но -число максимально производимых велосипедов, равное 100. Итак, возможности производства определяют условие
4x + y ≤ 100.
Еще одно условие - ограниченная емкость склада:
x + y ≤ 70
Обозначим цену мотоцикла а1(руб.), цену велосипеда –а2(руб.). По условиюа1= 2a2. Общая цена дневной продукции
S = а1 ∙ х + a2 ∙ у = 2a2 ∙ х + а2 ∙ у = а2 ∙ (2х + у).
Поскольку a2 -заданная положительная константа, то наибольшего значения следует добиваться отвеличины f =2х+у.
Итак, учитывая все условия задачи, приходим к ее математической модели: среди неотрицательных целочисленных решений системы линейных неравенств
(7.71)
найти такое, которое соответствует максимуму линейной функции
(7.72)
Проще всего решить эту задачу чисто геометрически. Построим на плоскости (х, у)область, соответствующую неравенствам (7.71) и условию неотрицательностиxиу.Эта область выделена на рис. 7.62 жирной линией. Всякая ее точка удовлетворяет неравенствам (7.71) и неотрицательности переменных. Пунктирные линии на рисунке - семейство прямых, удовлетворяющих уравнениюf= 2х + у=с(с разными значениями константыс).Вполне очевидно, что наибольшему возможному значениюf, совместному с предыдущими условиями, соответствует жирная пунктирная линия, соприкасающаяся с областьюМв точкеР.
Рис. 7.62.Графическое решение задачи об оптимальном плане производства (к примеру 1)
Этой линии соответствует значение f = 80. Пунктирная линия правее хоть и соответствует большему значению f, но не имеет общих точек сМ,левее - меньшим значениямf. Координаты точкиР(10,60) - искомый оптимальный план производства.
Отметим, что нам «повезло» - решение (х, у)оказалось целочисленным. Если бы прямые
4x + y = 100
х + у = 70
пересеклись в точке с нецелочисленными координатами, мы бы столкнулись со значительными проблемами. Еще больше их было бы, если бы наш завод выпускал три и более видов продукции.
Прежде чем обсуждать возникающие при этом математические проблемы, дадим формулировки нескольких классических задач линейного программирования в общем виде.
Пример 2. Транспортная задача.Некий продукт (например, сталь) вырабатывается натзаводахP1,P2, ...,Рm,причем ежемесячная выработка составляетдьа1, a2, …, аmтонн, соответственно. Пусть эту сталь надо доставить на предприятияQ1, Q2,..., Qk(всегоk),причемb1, b2, ..., bk -ежемесячная потребность этих предприятий. Наконец, пусть задана стоимостьcijперевозки одной тонны стали с заводаРiна предприятиеQj,.Естественно считать, что общее производство стали равно суммарной потребности в ней:
a1 + a2 +…+am = b1 + b2 +…+bk (7.73)
Необходимо составить план перевозок, при котором
1) была бы точно удовлетворена потребность в стали предприятий Q1, Q2,..., Qk,
2)была бы вывезена вся сталь с заводовР1, Р2,....,Pm;
3) общая стоимость перевозок была бы наименьшей.
Обозначим через xijколичество стали (в тоннах), предназначенной к отправке с заводаРiна предприятиеQj. План перевозок состоит из(m∙k)неотрицательных чиселxij (i=1, 2,...,m;j =1,2,...,k).
Таблица 7.10
Схема перевозок стали
|
в Q1 |
в Q2 |
в Q3 |
… |
в Qk |
Отправлено |
из P1 |
x11 |
x12 |
x13 |
… |
x1k |
a1 |
из Р2 |
x21 |
x22 |
x23 |
… |
x2k |
a2 |
… |
… |
… |
… |
… |
… |
… |
из Pm |
xm1 |
xm2 |
xm3 |
… |
xmk |
am |
Привезено |
b1 |
b2 |
b3 |
… |
bk |
|
Первое условие примет вид
(7.74)
Второе условие примет вид
(7.75)
Раз стоимость перевозки одной тонны из РiвQjравнаcij,то общая стоимостьS всех перевозок равна
(7.76)
Таким образом, мы приходим к следующей чисто математической задаче: дана система m+kлинейных алгебраических уравнений (7.74) и (7.75)c m∙kнеизвестными (обычнот∙k >> m+k)и линейная функцияS.Требуется среди всех неотрицательных решений данной системы найти такое, при котором функцияSдостигает наименьшего значения (минимизируется).
Практическое значение этой задачи огромно, ее умелое решение в масштабах нашей страны могло бы экономить ежегодно огромные средства.
Пример 3. Задача о диете.Пусть у врача-диетолога имеетсяnразличных продуктовF1, F2, ..., Fn,из которых надо составить диету с учетом их питательности. Пусть для нормального питания человеку необходимотвеществN1, N2, ...,Nm. Предположим, что за месяц каждому человеку необходимоγ1 кг веществаN1, γ2кг веществаN2, ...,γmкг веществаNm.Для составления диеты необходимо знать содержание питательных веществ в каждом продукте. Обозначим черезαijколичествоi-го питательного вещества, содержащегося в одном килограмме j-го продукта. Всю эту информацию представляют в виде, так называемой, матрицы питательности (табл. 7.11).
Таблица 7.11
Матрица питательности
-
Питательное вещество
Продукт
F1
F2
…
Fn
N1
α11
α12
…
α1n
N2
α21
α22
…
α2n
…
…
…
…
…
Nm
αm1
αm2
…
αmn
Предположим, что диетолог уже выбрал диету, т.е. определил, что человек должен за месяц потреблять η1кг продуктаF1,...,ηnкг продуктаFn.Полное количество питательного веществаN1будет
По условию требуется, чтобы его, по крайней мере, хватило
η1α11 + η2 α12 +…+ ηn α1n ≥ γ1
Точно то же и для остальных веществ. В целом
η1αi1 + η2 αi2 +…+ ηn αin ≥ γi (i = 1, 2,… m)
Эти условия определяют наличие минимума необходимых питательных веществ. Диета, для которой выполнены условия (7.78) - допустимая диета. Предположим, что из всех допустимых диет должна быть выбрана самая дешевая. Пусть πi -цена 1 кг продуктаFi.Полная стоимость диеты, очевидно,
S = π1η1 + π2η2 +… + πnηn. (7.79)
Таким образом, мы пришли к задаче: найти неотрицательное решение η1, …, ηnсистемы неравенств (7.78), минимизирующее выражение (7.79).
В примерах, приведенных выше. имеется нечто общее. Каждый из них требует нахождения наиболее выгодного варианта в определенной экономической ситуации. С чисто математической стороны в каждой задаче требуется найти значение нескольких неизвестных так, чтобы
1) все эти значения были неотрицательны;
2) удовлетворяли системе линейных уравнений или линейных неравенств;
3) при этих значениях некоторая линейная функция имела бы минимум (или максимум). Таким образом, линейное программирование -это математическая дисциплина, изучающая методы нахождения экстремального значения линейной функции нескольких переменных при условии, что последние удовлетворяют конечному числу линейных уравнений и неравенств. Запишем это с помощью формул: дана система линейных уравнений и неравенств.
Запишем это с помощью формул: дана система линейных уравнений и неравенств
(7.80)
и линейная функция
f = c1x1 + c2x2 + … + cnxn (7.81)
Требуется найти такое неотрицательное решение
x1 ≥ 0, x2 ≥ 0, …, xn ≥ 0
системы (7.80), чтобы функция f принимала наименьшее (или наибольшее) значение.
Условия (7.80) называют ограничениями данной задачи, а функцию f - целевой функцией (или линейной формой). В приведенных выше примерах ограничения имели вид не уравнений, а неравенств. Заметим, что ограничения в виде неравенств всегда можно свести к системе в виде равенств (способом введения добавочных неизвестных).
Так, для неравенства
ai1x1 + ai2x2 + … + ainxn ≥ bi
вводя добавочное неизвестное xn +1, получаем
xn+1 =ai1x1 + ai2x2 + … + ainxn - bi
Потребовав его неотрицательности наряду с остальными неизвестными, получим, что условие xn + 1≥0 превращает (7.84) в (7.83). Введя по отдельному дополнительному неизвестному для каждого из неравенств, получим систему уравнений, равносильную исходной системе неравенств.Пример.Дана система неравенств
Сведем ее к системе уравнений. Получим
После оптимизации значениями дополнительных неизвестных следует пренебречь.