
- •2.Билет
- •3.Билет
- •4.Билет.
- •5 Билет.
- •6.Билет
- •7.Билет
- •8.Билет
- •10 Билет
- •11.Билет
- •12 Билет
- •13 Билет
- •14 Билет
- •15 Билет
- •16Билет
- •17.Билет
- •18.Билет
- •19.Билет
- •20.Билет
- •21Билет
- •22Билет
- •23 Билет
- •25 Билет
- •26 Билет
- •28.Билет
- •29 Билет
- •41. Вихревое электрическое поле
- •42. Дифференциальная и интегральная формы уравнений Максвелла.
- •43. Колебательный процесс. Виды колебаний . Гармонические колебания и их параметры.
- •44. Дифференциальное уравнение гармонических колебаний. Энергия гарм.Колеб.
- •45.Линейный гармонический Осциллятор, Математический и физический маятники:
- •46.Сложение одинаково направленных гармонических колебаний, биения.
- •47.Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу. Физический смысл спектрального разложения.
- •48.Свободно затухающие колебания. Дифференциальное уравнение свободных затухающих колебаний
- •50 Вопрос
- •51 Вопрос
- •52 Вопрос
17.Билет
Масса движущихся релятивистских частиц зависит от их скорости:
(39.1)
где m0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в вакууме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.
Основной закон релятивистской динамики материальной точки имеет вид
(39.2)
или
(39.3)
где
(39.4)
— релятивистский импульс материальной точки.
(40.6)
Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — закон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.
Закон (40.6) можно, учитывая выражение (40.3), записать в виде
закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.
18.Билет
.
Опытным путем (1910—1914) американский физик Р. Милликен (1868—1953) показал, что электрический заряд дискретен, т. е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е=1,610–19 Кл). Электрон (me=9,1110–31 кг) и протон (тp= 1,6710–27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.
Из обобщения опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком М. Фарадеем (1791—1867), — закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.
Электрический заряд — величина релятивистски инвариантная, т. е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.
Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:
где k — коэффициент пропорциональности, зависящий от выбора системы единиц.
Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид
(78.1)
где F12 — сила, действующая на заряд Q1 со стороны заряда Q2, r12 — радиус-вектор, соединяющий заряд Q2 с зарядом Q1, r = |r12| (рис. 117). На заряд Q2 со стороны заряда Q1 действует сила F21 = –F12.
19.Билет
Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:
(79.1)
Как следует из формул (79.1) и (78.1), напряженность поля точечного заряда в вакууме
(79.2)
Величина
называется потоком вектора напряженности через площадку dS. Здесь dS = dSn — вектор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Выбор направления вектора n (а следовательно, и dS) условен, так как его можно направить в любую сторону. Единица потока вектора напряженности электростатического поля — 1 Вм.
(80.1), получаем
(80.2)
Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.
Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.
Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя 1.