Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по компьютерной графике [по билетам].doc
Скачиваний:
68
Добавлен:
02.05.2014
Размер:
805.89 Кб
Скачать

10. Геометрическое моделирование и решаемые им задачи…

Модель – это представление некоторых, необязательно всех, свойств объекта, либо конкретно существующего, либо абстрактного, его особенностей.

При оценке степени соответствия синтезированных изображений и оригинала в телевидении и кинематографе используются три уровня подобия:

1. Физическое подобие означает, что изображение по основным физическим характеристикам повторяет оригинал. Подобие считается физически полным, если характеристики оригинала и изображения полностью подобны или строго пропорциональны.

2. Психофизическое (физиологическое) – соответствие на уровне зрительных ощущений, например фотореалистичная графика.

3. Психологическое – предполагает лишь некоторую схожесть между объектом и изображением: чертежи, проволочные модели и т.п

геометрические модели – это модели состоящие из след компонентов:

- пространственное расположение и форма – геометрия объекта; некоторые атрибуты: цвет, текстура;

- топология (связность с другим объектом).

Способы представления объектов:

Аналитическая модель – это набор чисел и, если необходимо, логических параметров, которые играют роль коэффициентов и других величин в уравнениях, аналитических соотношениях, задающих объект данного типа.

Координатные модели – это наборы точек, принадлежащих объектам, которые задаются координатами.

У координатных моделей могут быть разновидности:

- координатно-разностные модели, где вместо координат их разности;

- помимо координат, в каждой точке могут быть указаны дополнительные характеристики(проекции нормалей, векторов, значения каких-либо параметров и т.п.);

- могут быть дополнены кодами, управляющими командами (при описании нескольких кривых это могут быть команды окончания кривых, коды завершения моделей и т.п.);

- приближенные координатные модели; предполагается, что в связи с погрешностями измерений и другими факторами точки этих моделей смещены относительно их правильного положения, тогда здесь возникает задача аппроксимации – поиска такой линии или поверхности, которые бы проходили как можно ближе к заданным точкам.

Декартова система координат – основа численного моделирования объектов.

Одну и ту же фигуру можно задать разными способами, но обычно выделяют те, для которых количество параметров минимально. Это минимальное количество называют параметрическим числом образа.

В задании объекта могут также участвовать логические параметры. Эти параметры не влияют на параметрические числа объектов и можно ограничиться числами 0 и 1 или же установить параметр по знаку числа. Так же очень важно задавать направление вычерчивания, которое необходимо для определения видимости сторон. Для этого используют касательные векторы, или векторы направления.

Вопрос 41

Построение реалистических изображений: вычисление векторов нормалей, модели закраски (однотонная, Гуро и Фонга), реализация закрашивания в OpenGL .

Существует три основных способа закраски многоугольников: однотонная закраска, закраска с интерполяцией интенсивности и закраска с интерполяцией векторов нормали.

При однотонной закраске предполагается, что и источник света и наблюдатель находятся в бесконечности, поэтому произведения L·N и R·V постоянны. На изображении могут быть хорошо заметны резкие перепады интенсивности между различно закрашенными многоугольниками. Если многоугольники представляют собой результат аппроксимации криволинейной поверхности, то изображение недостаточно реалистично.

В методе закраски с интерполяцией интенсивности (метод Гуро) нормали в вершинах многоугольников вычисляются как результат усреднения нормалей ко всем граням, которым принадлежит данная вершина. Используя значения нормалей, вычисляют интенсивности в вершинах по той или иной модели освещения. Эти значения затем используются для билинейной интерполяции: для данной строки сканирования вначале находят значения интенсивностей на ребрах, а затем линейно интерполируют между ними при закраске вдоль строки.

Недостатки метода Гуро:

  • с помощью метода Гуро можно изображать только матовые поверхности, не имеющие зеркальных бликов (т.к. блик будет размазываться по поверхности и скроется). Действительно, в случае, когда блик расположен внутри грани и не доходит до вершин, зеркальная составляющая в вершинах равна нулю и, следовательно, блик не появится при интерполяции.

  • возникает классический оптический эффект (Mach banding): на границах четырехугольников человеческий глаз усиливает переходы и границы.

В методе закраски с интерполяцией нормали (метод Фонга) значение нормали вдоль строки интерполируется между значениями нормалей на ребрах для данной строки. Значения нормалей на ребрах получается как результат интерполирования между вершинами. Значения же нормалей в вершинах являются результатом усреднения, как и выше рассмотренном методе. Значение нормали для каждого из пикселей строки используется для вычислений по той или иной модели освещения.

Изображения, полученные методом Фонга, получаются более реалистичными, но этот метод требует гораздо большего объема вычислений: во-первых, интерполируются три векторные компоненты, а во-вторых, высчитывается интенсивность в каждой точке.

Недостатки метода Фонга:

  1. работая в плоскости экрана, мы проводим интерполяцию с одинаковыми приращениями, хотя правильнее было бы учитывать перспективное представление граней и использовать разные приращения;

  2. возникают проблемы при анимации. Дело в том, что, в определенный момент времени при повороте грани нормаль в одной и той же точке P начинает интерполироваться по нормалям другой тройки вершин, что, естественно, иногда бывает очень заметно.