Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по теплотехнике.doc
Скачиваний:
19
Добавлен:
24.09.2019
Размер:
7.1 Mб
Скачать

2 Нагревание и охлаждение плоской стенки.

БИЛЕТ 23

1 Дифференциальные уравнения конвективного теплообмена.

В подразделе 8.5 дан вывод дифференциального уравнения теплопроводности в неподвижной среде, аналогичным образом можно вывести дифференциальное уравнение в движу­щейся среде, называемое уравнением энергии, которое в декар­товых координатах имеет вид

или в более краткой записи:

где τ время, с; Vx, Vy, Vz проекции вектора скорости на оси х, у, z, м/с; а температуропроворности, м2/с;

полная производная температура по времени т, которую в связи с тем, что она связана с движущейся материей или субстанцией, называют субстанциаль­ной производной и обозначают особым символом Dt/dτ;

оператор Лапласа.

Уравнение (10.3) описывает изменение температуры в точке х, у, z в неподвижной системе координат, при этом первый член левой части уравнения характеризует изменение температуры во времени, последующие члены левой части изменение темпера­туры вследствие движения жидкости через рассматриваемую точку пространства; правая часть уравнения выражает измене­ние температуры вследствие теплопроводности.

При vx = vy = vz = 0 уравнение энергии переходит в дифферен­циальное уравнение теплопроводности (8.12).

Для интегрирования уравнения (10.3) и расчета по нему температурного поля необходимо знать компоненты скорости vx, vy, vz. Это приводит в общем случае к необходимости дополни­тельного рассмотрения уравнений движения (уравнений Навье Стокса) и уравнения неразрывности потока.

Уравнения движения для несжимаемой жидкости (р = const) в проекциях на оси декартовых координат имеют вид:

где р плотность жидкости, кг/м3; gx, gy, gz проекции ускорения поля внешних массовых сил на оси х, у. z. м/с2; р давление. Па; р,динамиче­ская вязкость, Па-с; β— коэффициент объемного расширения, 1/К; tx тем­пература среды (температура жидкости в ядре потока);

—— субстанциальная производная;

- оператор Лапласа.

С физической точки зрения уравнения (10.5) выражают ра­венство проекций равнодействующей всех сил, действующих на элемент объема жидкости (правые части уравнений), проекци­ям сил инерции (левые части уравнений). При этом первые сла­гаемые правых частей системы уравнений (10.5) выражают про­екции подъемной силы, вторые слагаемые проекции сил дав­ления, третьи слагаемые проекции сил внутреннего трения.

Уравнение неразрывности для несжимаемых жидкостей за­писывается в виде

Интегрирование системы уравнений (10.3), (10,5), (10.6) позволяет получить неизвестные функции t(x, у, z, τ), v{x, у, z, τ), р (x,y,z,τ). Для получения конкретного (частного) реше­ния указанную систему уравнений необходимо дополнить усло­виями однозначности, которые, как и в случае интегрирования дифференциального уравнения теплопроводности (8.12), вклю­чают в себя геометрические, физические, начальные и гранич­ные условия.

БИЛЕТ 24