Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все ответы на билеты по К-2(НЕ УДАЛЯТЬ!!!).doc
Скачиваний:
5
Добавлен:
24.09.2019
Размер:
2.75 Mб
Скачать

Билет 22

1) Аппараты и системы очистки сточных вод.

Первый этап очистки сточных вод заключается в удалении взвешенных частиц, для чего используются методы процеживания, отстаивания и фильтрации и соответствующие средства ЭБТ. Для очистки от менее крупных примесей и растворенных веществ на втором этапе применяется большой перечень физико-химических, химических, электрохимических и ряда других методов и средств. В результате очистки производственных стоков образуется шлам-взвесь мелкодисперсных осадков сточных вод, который в свою очередь требует обезвреживания и утилизации. Особую группу средств очистки сточных вод представляют устройства, основанные на способности микроорганизмов использовать органические и некоторые неорганические вещества (например, H2S и NH3) для своего питания, - биохимические средства очистки.

Ниже в соответствии с классификацией (см. рис. 11) дается краткая характеристика средств очистки и обезвреживания сточных вод (СВ).

К средствам механической очистки относятся средства процеживания, отстаивания и Фильтрации. Первые из них представлены подвижными или неподвижными решетками из металлических стержней круглого или прямоугольного (квадратного) сечения с зазором 5...25 мм, ситами для улавливания частиц d > 0,5...1 мм и фракционаторами, в которых дополнительной сеткой с ячейками 60...100 мкм осадок делят на 2 фракции. Полученный при процеживании шлам направляется на переработку или на дробилки.

В РФ широкое распространение получили отстойники (горизонтальные, вертикальные и радиальные) и песколовки. Горизонтальные отстойники имеют глубину h = 1,5...4 м, их длина равна 8...12 h, производительность достигает 15000 м3/сут., эффективность очистки до 60%. Вертикальные отстойники представляют собой железобетонные цилиндры( h = 4,5 м, скорость движения СВ - Vс = 0,5...0,8 м/с), в которых примеси осаждаются в восходящем потоке, а очищенные СВ удаляются через кольцевые водосборники; эффективность очистки 40...50%. В радиальных отстойниках СВ движутся от центра к периферии, h = 1,5...5 м, d достигает 60 м, производительность 20000 м3/сут., эффективность очистки - 60%. Скорость осаждения примесей и эффективность очистки в отстойниках можно повысить за счет уменьшения слоя жидкости (трубчатые и пластинчатые отстойники), ее подогрева для уменьшения вязкости и применения коагулянтов и флокулянтов. Песколовки имеют глубину до 1 м, Vс в них должна быть не более 0,3 м/с. Производительность очистки - 60%.

Рис. 12. Схема соответствия возможностей средств ПГО гранулометрическому составу пыли

К группе средств механической очистки также относятся аппараты, в которых удаление примесей обеспечивается центробежными силами, - гидроциклоны и центрифуги. Так, для удаления нефти и всплывающих веществ применяются открытые гидроциклоны (Vс < 0,2 м/с), а для удаления химических веществ - центрифуги.

Фильтры для очистки СВ делятся на медленные (через пленку) и скоростные (через слой загрузки). Конструктивно они выполняются в виде металлических сеток с перегородками из ткали, стекловолокна, асбеста, керамики. В зернистых фильтрах в качестве слоя загрузки используют кварц, песок, шлак. В медленных зернистых фильтрах Vс = 0,1...0,2 м/с, концентрация примесей 25...50 мг/л и высокая эффективность очистки; в скоростных фильтрах h слоя загрузки 0,5...2 мм, Vс = 15...20 м/с. Регенерация зернистых фильтров проводится обратным током воды. В микрофильтрах барабанного типа диаметр ячеек 40...70 мкм, Vс = 25 м/с, эффективность очистки 50...60%.

В машиностроении для удаления ферромагнитных примесей применяют магнитные сепараторы с Vс = 50 м/с и эффективностью очистки до 90%. Для очистки от масел и жиров используется вспененный полиуретан, при этом Vс = 0,01 м/с и эффективность очистки достигает 90%. Регенерация полиуретана легко обеспечивается отжиманием на валках.

Из физико-химических методов очистки наибольшее распространение получили флотация, ионообименнфя очистка, адсорбция и экстракция. Флотация основана на прилипании гидрофобных частиц к пузырькам воздуха. Выделение воздуха из воды обеспечивается ваку-умированием до 225...300 мм рт.ст., механическим диопергированием воздуха импеллерами, пенно-барботажными устройствами, напорной, химической и биологической флотацией. Установки для флотации включают емкости для насыщения СВ воздухом (при напорной флотации) или аэраторы и другие флотационные камеры при прочих способах получения пузырьков, а также собственно флотаторы. Флотация применяется для очистки от нерастворимых диспергированных ВВ и ПАВ. Ионообменная очистка обеспечивает удаление Zn, Cu, Cr, Ni, Pb, Hg, Cd, As и РВ за счет обмена ионами с твердой фазой естественных ионитов (цеолитов, слюды, шпата) и синтетических (силикагелей, перматитов) и органических ионообменных смол (гуминовых кислот, сульфоуглей). Установки для такой очистки представляют собой листы или плиты из ионообменных материалов, расположенные перпендикулярно движению СВ. Экстракция заключается в разделении жидких или твердых веществ с помощью растворителей (экстрагентов). Она применяется для очистки СВ от фенолов, масел, органических кислот с концентрацией до 4 г/л. Конструктивно устройство для экстракции представляет собой смеситель и отстойник. Устройства для адсорбации аналогичны адсорберам для очистки выбросов (см. п.п. 2.3.2).

Из химических и электрохимических методов очистки широкое распространение получили реакции нейтрализации, окисления и восстановления, а также коагуляция и флокуляция. Наиболее выгодна нейтрализация смешиванием кислых и щелочных СВ, а при ее невозможности нейтрализация обеспечивается добавлением реагентов, хемосорбций и фильтрацией через нейтрализующие материалы. Для реакции окисления применяются N2O2, KMnO4, O3 и др. Применение О3 или озонирование эффективно при обезвреживании цианидов и тяжелых металлов. В состав установок входят генераторы О3 и адсорберы. Восстановление применяется для обезвреживания Cr и As, для чего используются гидразин, барогидрат натрия, сульфид железа. Из электрохимических методов для обезвреживания цианидов применяется анодное окисление; при катодном восстановлении СВ очищаются от ионов Hg, Pb, Cu и Cd путем их осаждения в виде нерастворимых сульфидов. Процесс коагуляции состоит в агрегировании дисперсных частиц до крупных хлопьев с последующим их осаждением при добавлении в раствор солей Al и Fe. Более активно такой процесс идет при добавлении флокулянтов - частиц крахмала, декстрина и целлюлозы. Конструктивно устройства для коагуляции и флокуляции представляют собой систему из смесителя и отстойника.

Биохимические средства очистки СВ применяют чаще всего для удаления и обезвреживания органических загрязнений. В их основе лежат ферментативные реакции микроорганизмов, для которых необходимы определенная t (20...3О˚С), достаточное содержание O2 в СВ и присутствие биогенных элементов и микроэлементов (N, S, P, K, Na, Ca, CL, Mn и т.д.) Высокие и низкие t, низкое содержание О2 и недостаток биогенных элементов и микроэлементов резко уменьшают эффективность биохимической очистки или полностью останавливают ее. Она может проводиться в природных условиях - на полях орошения и в биологических прудах, в искусственных сооружениях (аэротенках и метантенках) и с помощью биологических фильтров.

Поля орошения представляют собой специально подготовленные земельные участки, куда после физико-химической очистки могут сбрасываться СВ. Почва этих полей содержит большое число микроорганизмов и простейших, что обеспечивает интенсивное окисление органических и некоторых неорганических примесей и превращение их в минеральные соединения. После завершения этого процесса поля орошения используют для выращивания зерновых культур, трав и овощей. Если они используются только для биологической очистки, их называют полями фильтрации.

Биологические пруды представляют 3...5-ступенчатый каскад, куда сбрасываются СВ после их очистки на предприятиях. При небольшой глубине (до 1 м) в таких прудах обеспечивается естественная аэрация, в случае большей глубины применяется искусственная аэрация.

Аэротенками называют открытые железобетонные аэрируемые резервуары, куда подается смесь СВ и активного ила. На поверхности активного ила идет адсорбция органических веществ и минерализация легкоокисляющихся соединений, требующая высокого содержания О2. Затем идет доокисление органики и регенерация активного ила.

Метантенки представляют собой резервуары вместимостью до нескольких тысяч м3 для биологической обработки при t = 30...55°С органического осадка СВ. При этом выделяются газы, содержащие 83...85% метана и 32...24% CO2. Метан сжигают в топках. Данный способ широко принят в странах, имеющих ограниченные запасы нефти и газа.

Биофильтр представляет собой резервуар с двойным дном, наполненный крупнозернистым фильтрующим материалом. При проходе через этот материал СВ с органическими примесями образуют биологическую пленку, минерализирующую органические вещества. Имеется большое число конструкций биофильтров, которые различаются по естественной и искусственной подаче воздуха, рециркуляции СВ и т.д.

Помимо рассмотренных выше средств механической, физико-химической и биохимической очистки в последние годы разработаны новые типы обезвреживания газов и СВ на основе процессов химии высоких энергий. К ним относят радиационную очистку с помощью ускоренных электронов и плазмохимическое обезвреживание вредных и токсических веществ. В первом случае воздействие ускоренных электронов вызывает радиолиз токсических веществ и превращение их в нетокосичные. Ускоренные электроны обеспечивает образование свободных радикалов и ионов, обладающих как сильными окислительными, так и восстановительными свойствами, что делает этот метод универсальным и высокоэффективным. В установки, реализующие этот метод, должны входить ускорители электронов и реакционные камеры, а также СЗ от ИР.

Плазмохимическая переработка использует низкотемпературную плазму ( Т ≤ 105 К), образующуюся при воздействии на вещество электрических разрядов, СВЧ и лазерных излучений. Глазным конструктивным элементом установок являются плазмотроны (например, высокочастотные или дуговые), в которых вредные примеси испаряются, ионизируются и обезвреживаются.

2) Прогнозирование пожарной обстановки и ее оценка. Такая обстановка может возникнуть при ЯВ из-за воздействия СИ, техногенных пожарах на объектах экономики и природных пожарах в лесах и на торфяниках.

В процессе прогнозирования определяют площадь и периметр возможного пожара, характер пожара (отдельный или сплошной пожар, огненный шторм или массовый пожар), вероятные направления и скорость его распространения, а также вероятный характер воздействия пожара на людей и объекты в различные временные отрезки, с учетом изменения метеоусловий. При этом берут самый неблагоприятный вариант: ось пожара проходит через объект экономики или населенный пункт и VВ > 5 м/с (при ЯВ принимают воздушный взрыв при очень прозрачном воздухе).

Полученные размеры возможного пожара наносят на карту (или схему) местности с учетом принятого (или фактического) направления ветра. Затем проводят оценку прогнозируемой пожарной обстановки в направлении обеспечения БЖД людей и успешного функционирования объекта экономики или населенного пункта. При этом выбирают варианты локализации и тушения пожара, при которых исключались (уменьшались) потери среди людей и материальный ущерб на объекте или в населенном пункте.

Методики прогнозирования и оценки возможной пожарной обстановки различны как для техногенных, так и природных пожаров. Определенная особенность существует при прогнозировании зон пожаров, вызванных СИ ЯВ. Поэтому ниже рассмотрим их кратко, считая, что детально с ними студенты будут знакомиться по практикуму [3] при выполнении практических занятий или курсовой работы по данной дисциплине.

3.3.4.1. Методика прогнозирования и оценки возможных зон пожаров, вызванных СИ ЯВ. Исходными данными при этом служат: мощность ЯВ, расстояние до объекта (населенного пункта), характеристика атмосферы, степень огнестойкости и категорийность по взрывопожароопасности зданий и сооружений, плотность размещения зданий на объекте или в населенном пункте т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант пожара по последствиям.

Как известно, при ЯВ от СИ образуются три типа зон пожаров (см. п.п. 1.4.6). Поэтому методика прогнозирования и оценки этих зон состоит из 3-4 этапов. На 1 этапе определяют величину СИ на объекте и для всех расстояний от эпицентра ЯВ. Затем наносят возможную обстановку на карту (или схему) местности, четко выделяя границы зон пожаров.

На 2 этапе оценивают возможную пожарную обстановку по отдельным зданиям объекта (населенного пункта) с учетом их степени огнестойкости и категории по взрывопожароопасности, а затем и в целом по объекту (населенному пункту). При этом принимают во внимание плотность размещения зданий и VВ, влияющих на скорость распространения огня.

На 3 этапе разрабатывают меры по исключению или ограничению возможности возникновения и развития пожара, определяют возможные способы и средства по локализации и в последующем - тушению пожара на объекте (в населенном пункте). Для более точного определения действий пожарных подразделений на 4 этапе проводят временной прогноз пожарной обстановки с учетом изменений VВ и его направления.

3.3.4.2. Методика прогнозирования и оценки возможной пожарной обстановки при техногенных пожарах. Исходными данными при этом служат: характеристика элементов объекта по взрывопожароопасности и огнестойкости, плотность размещения зданий на объекте, его расположение по отношению к населенному пункту, другим объектам экономики, лесному и торфяному массивам и т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант пожара по последствиям.

Методика прогнозирования и оценка возможностей пожарной обстановки состоит из 4 этапов. На 1 этапе определяют параметры возможного пожара на наиболее пожароопасном элементе объекта экономики, в том числе площадь и периметр пожара, возможность загорания соседних зданий и сооружений с учетом их огнестойкости и взрывопожароопасности и т.д. Затем наносят размеры пожара на генплан объекта.

На 2 этапе оценивают возможную пожарную обстановку на объекте экономики, ее влияние на соседние объекты и населенный пункт, принимая во внимание плотность размещения зданий, VВ и скорость развития пожара VРП.

На 3 этане разрабатывают меры по исключению или ограничению возможности возникновения и развития пожара, определяют возможные способы и средства локализации и тушения техногенного пожара на объекте экономики.

На 4 этапе проводят временной прогноз пожарной обстановки крупного пожара с учетом изменений VВ, VРП и их направлений. По такому прогнозу разрабатывают тактику тушения пожара, необходимость в привлечении дополнительных сил и средств для быстрого его тушения, меры обеспечения БЖД людей, занятых на тушении пожара, и т.д.

3.3.4.3. Методика прогнозирования и оценки возможной пожарной обстановки при природных пожарах. Исходными данными при этом служат: размеры лесного или торфяного массива, его расположение по отношению к населенному пункту, объектам экономики и другим массивам, степень огнестойкости близкорасположенных зданий, сооружений и их взрывопожароопасность и т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант пожара по последствиям.

Методика прогнозирования и оценки возможной пожарной обстановки состоит из 4 этапов. На 1 этапе определяют параметры возможного природного пожара, в том числа площадь и периметр пожара, основные направления его развития и VПР по фронту, флангам и тылу в зависимости от VВ и т.д. Затем наносят размеры пожара на карту местности или генплан торфопредприятия (лесхоза).

На 2 этапе оценивают возможную пожарную обстановку в лесном (на торфяном) массиве, ее влияние на населенные пункты, другие лесные (торфяные) массивы. При этом учитывают VВ, VПР и вид пожара (низинный или верховой - в лесу; поверхностный или подземный - на торфяниках).

На 3 этапе проводят временной прогноз по развитию лесного или торфяного пожара с учетом изменений VВ и его направления.

На 4 этапе разрабатывают тактику локализации и тушения данного пожара, необходимость сил и средств для этого, меры обеспечения БЖД людей, занятых на локализации и тушении пожара и т.д.

Прогнозирование возможной химической обстановки и ее оценка. Такая обстановка может возникнуть при авариях и утечках на ХОО и применении ХО.

В процессе прогнозирования определяют вид ОВ или СДЯВ, продолжительность поражающего их действия и токсодозу, размеры (глубину и ширину или глубину и угловой размер) ОХП и ЗХЗ, а также время подхода облака зараженного воздуха (ЗВ) к объекту экономики или населенному пункту. При значительном действии ОВ (СДЯВ) прогнозируют обстановку для различных временных отрезков с учетом изменения метеоусловий. При этом принимают самый неблагоприятный вариант: при применении ХО - район применения оружия с надветренной стороны, V10 до 1 м/с и ось облака ЗВ проходят через объект экономики или населенный пункт; при аварии, утечке на ХОО - разрушается наибольшая емкость со свободным разливом или в поддон СДЯВ при реальных (многолетних) метеоусловиях; разрушается весь ХОО со свободном разливом при СВУА типа "инверсия" и V10 = 1 м/с; интенсивная утечка на высоте ниже 10 м при Vв до 1 м/с и СВУА типа "инверсия". При этом ось облака ЗВ проходит через объект экономики или населенный пункт.

Полученные размеры ОХП и 3Х3 заносят на карту (или схему) местности, с учетом принятого (или фактического) направления ветра. Затем ведется оценка прогнозируемой обстановки в направлении обеспечения БЖД людей и успешного функционирования объекта экономики или населенного пункта. При этом выбирают варианты действий людей на объекте и быту, при которых исключались химические потери при принятой химической защите.

Ниже остановимся на кратком рассмотрении возможных химических обстановок, возникающих в мирное время при химических авариях (разрушениях) и утечках СДЯВ. Более детально с ними знакомились студенты отдельных направлений при выполнении расчетно-графической работы по дисциплине "Экология", а других направлений - будут знакомиться по практикуму [6] при выполнении практических занятий или курсовой работы по дисциплине "БЖД".

3.3.3.1. Методика прогнозирования и оценки ЗХЗ местности при авариях (разрушениях) на ХОО и транспорте. Исходными данными при этом служат: общее количество СДЯВ на объекте и данные о размещении их запасов в технологических емкостях и трубопроводах, количество СДЯВ, выброшенных в атмосферу, и характер их разлива на подстилающей поверхности ("свободно" или "в поддон"), метеоусловия (t воздуха, V10 и СВУА) и т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант по рассеиванию СДЯВ.

Методика прогнозирования и оценки такой обстановки установлена РД 52.04.253-90 [29] и состоит из 3 этапов. На 1 этапе определяют: 1). при разрушении наибольшей емкости со СДЯВ - эквивалентное количество СДЯВ в первичном и вторичном облаках и продолжительность поражающего действия этого вещества; 2). при разрушении всего ХОО - продолжительность поражающего действия всех выброшенных СДЯВ и суммарное эквивалентное количество СДЯВ во вторичном облаке.

На 2 этапе вычисляют полную, предельно возможную и окончательную глубину 3Х3, площади зон возможных и фактических химических заражений и время подхода облака ЗВ к объекту экономики или населенному пункту (при разрушении всего ХОО вычисление ведется только по вторичному облаку).

На 3 этапе наносят размеры ЗХЗ на карту (или схему) местности и оценивают результаты прогноза, исходя из окончательной глубины заражения, времена подхода облака ЗВ к объекту или населенному пункту и продолжительности поражающего действия СДЯВ. На базе такой оценки предлагается комплекс организационных и инженерно-технических мероприятий и разрабатываются тексты оповещения населения об опасности для каждого случая разрушения на ХОО.

3.3.3.2. Методика прогнозирования и оценки ЗХЗ местности при утечках токсических веществ на объекте. Исходными данными при этом служат: массы выбрасываемого токсического вещества в единицу времени, его токсичность, направление и скорость ветра, характер прилегающей местности и т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант по рассеиванию вещества.

Методика прогнозирования и оценки вытекает из ОНД-86 [30] и состоит из 3 этапов. На 1 этапе определяют максимальную приземную концентрацию токсического вещества и расстояние от источника утечки. Затем рассчитывают приземные концентрации этого вещества по оси факела утечки до тех пор, пока последняя не будет ниже поражающей концентрации.

На 2 этапе вычисляют приземные концентрации перпендикулярно оси утечки (т.е. ширину поражающей зоны) на тех же удалениях от источника утечки до тех пор, пока последняя не будет ниже поражающей концентрации.

На 3 этапе наносят размеры ЗХЗ на карту (или схему) местности и оценивают результаты прогноза, исходя из глубины и ширины ЗХЗ в направлении обеспечения БЖД населения поселков и отдельных производств, попавших в поражающую ЗХЗ.