Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matan.docx
Скачиваний:
1
Добавлен:
24.09.2019
Размер:
104.8 Кб
Скачать

10) Метод искусственного базиса.

Данный метод решения применяется при наличии в системе ограничений и условий-равенств, и условий-неравенств, и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных Ri со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами M, имеющими смысл "штрафов" за ввод искусственных переменных, а в задачи минимизации - с положительными M. Таким образом из исходной получается новая M-задача (поэтому метод искусственного базиса так же называют M-методом).

Если в оптимальном решении М-задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении M-задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F, а другая – для составляющей M. При составлении симплекс таблицы полагают что исходные переменные являются небазисными, а дополнительные (xn+m) и искусственные (Ri)- базисными.

Исходная таблица для "Метода искусственного базиса" имеет следующий вид:

 

x1

x2

...

xn-1

xn

b

F

-a0,1

-a0,2

...

-a0,n-1

-a0,n

-b0

xn+1

a1,1

a1,2

...

a1,n-1

a1,n

b1

xn+2

a2,1

a2,2

...

a2,n-1

a2,n

b2

Ri

ai,1

ai,2

...

ai,n-1

ai,n

bi

...

...

...

...

...

...

...

xn+m

am,1

am,2

...

am,n-1

am,n

bm

M

-∑ai,1

-∑ai,2

...

-∑ai,n-1

-∑ai,n

-∑bi

Элементы дополнительной строки M рассчитываются как сумма соответствующих коэффициентов условий-равенств (условий в которые после приведения к каноническому виду введены переменные Ri) взятая с противоположным знаком.

11) Взаимно двойственные задачи линейного программирования и их свойства.

Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче. Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей, как мы уже знаем, в нахождении максимального значения функции

(32)

при условиях

(33)

(34)

Определение 1. Задача, состоящая в нахождении минимального значения функции

(35)

при условиях

(36)

(37)

называется двойственной по отношению к задаче (32) – (34). Задачи (32) – (34) и (35) – (37) образуют пару задач, называемую в линейном программировании двойственной парой. Сравнивая две сформулированные задачи, видим, что двойственная задача составляется согласно следующим правилам:

1. Целевая функция исходной задачи (32) – (34) задается на максимум, а целевая функция двойственной (35) – (37) – на минимум.

2. Матрица

(38)

составленная из коэффициентов при неизвестных в системе ограничений (33) исходной задачи (32) – (34), и аналогичная матрица

(39)

в двойственной задаче (35) – (37) получаются друг из друга транспонированием (т. е. заменой строк столбцами, а столбцов – строками).

3. Число переменных в двойственной задаче (35) – (37) равно числу ограничений в системе (33) исходной задачи (32) – (34), а число ограничений в системе (36) двойственной задачи – числу переменных в исходной задаче.

4. Коэффициентами при неизвестных в целевой функции (35) двойственной задачи (35) – (37) являются свободные члены в системе (33) исходной задачи (32) – (34), а правыми частями в соотношениях системы (36) двойственной задачи – коэффициенты при неизвестных в целевой функции (32) исходной задачи.

5. Если переменная xj исходной задачи (32) – (34) может принимать только лишь положительные значения, то j–е условие в системе (36) двойственной задачи (35) – (37) является неравенством вида “? ”. Если же переменная xj может принимать как положительные, так и отрицательные значения, то 1 – соотношение в системе (54) представляет собой уравнение. Аналогичные связи имеют место между ограничениями (33) исходной задачи (32) – (34) и переменными двойственной задачи (35) – (37). Если i – соотношение в системе (33) исходной задачи является неравенством, то i–я переменная двойственной задачи . В противном случае переменная уj может принимать как положительные, так и отрицательные значения.

Двойственные пары задач обычно подразделяют на симметричные и несимметричные. В симметричной паре двойственных задач ограничения (33) прямой задачи и соотношения (36) двойственной задачи являются неравенствами вида “ ”. Таким образом, переменные обеих задач могут принимать только лишь неотрицательные значения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]