- •1. Дувп. Решение. Общее решение. Общий интеграл. Промежуточный интеграл. Первый интеграл. Понижение порядка с помощью независимых первых интегралов.
- •2. Дувп. Задача Коши. Теорема Коши-Пикара. Теорема Пеано. Краевая задача.
- •3. Дувп. Неполные уравнения, интегрируемые в квадратурах.
- •4. Дувп. Неполные уравнения, допускающие понижение порядка.
- •5. Полные уравнения, допускающие понижения порядка.
- •6. Линейные дувп. Задача Коши. Т. Коши-Пикара. Однородные и неоднородные уравнения. Некоторые свойства решений лоду. Линейная независимость системы функций. Определитель Вронского.
- •7. Линейная независимость частных решений лоду n-го порядка. Формула Остроградского-Лиувилля.
- •8. Линейные ду n-го порядка. Фср. Теорема об общем решении лоду.
- •9. Задача о построении лоду по заданной фср.
- •10. Лоду n-го порядка с постоянными коэффициентами. Т. Коши-Пикара. Метод Эйлера построения фср. Случай простых корней характеристического уравнения.
- •11. Лоду n-го порядка с ПостК. Метод Эйлера построения фср. Случай кратных корней характеристического уравнения. Теорема об интегрируемости.
- •12. Лнду n-го порядка. Т. О структуре ор. Нек. Св-ва решений. Принцип суперпозиции.
- •13. Лнду n-го порядка. Метод Лагранжа вариации произвольных постоянных для отыскания чр. Т. Об интегрируемости.
- •14. Метод Коши отыскания чр лнду n-го порядка.
- •15. Лнду n-го порядка с ПостК и специальной правой частью (спч) вида .Метод неопределенных коэффициентов.
- •16. Лнду с ПостК и спч вида . Метод неопределенных коэффициентов.
- •17. Лнду с ПостК и спч вида . Метод неопределенных коэффициентов. Метод комплексных амплитуд.
- •18. Гармонический осциллятор под действием внешней гармонической силы. Явление резонанса.
- •19. Линейный осциллятор под действием внешней гармонической силы.
- •20. Лоду n-го порядка с ПеремК. Приведение к лду с ПостК с помощью замены аргумента.
- •21. Оду Эйлера.
- •22. Лоду n-го порядка с ПеремК. Приведение к лду с ПостК с помощью замены искомой функции.
- •23. Понижение порядка лоду n-го порядка с ПеремК при помощи известного частного решения.
- •24. Отыскание чр лоду n-го порядка с ПеремК в виде функции заданного вида и в виде степенного или обобщенного степенного ряда.
- •25 Лоду второго порядка с ПеремК.
- •26. Способы поиска чр лнду n-го порядка с ПеремК. Неоднородное ду Эйлера.
- •27. Системы обыкновенных ду. Каноническая и нормальная системы. Приведение ду n-го порядка, разрешенного относительно старшей производной, к нормальной сду n-го порядка.
- •28. Сду в нормальной форме. Решение. Общее решение. Частное решение. Задача Коши. Геометрический смысл задачи Коши.
- •29. Сду в нормальной форме. Т. Коши-Пикара. Т. Пеано. Метод Пикара как приближенный метод решения зк.
- •30. Общая теория нормальных cду и ду n-го порядка.
- •31. Лсду в нф. Т. Коши-Пикара. Однородные и неоднородные системы. Некоторые свойства решений однородной системы.
- •32. Лосду в нф. Линейная независимость n частных решений. Определитель Вронского. Формула Остроградского-Лиувилля.
- •33. Лосду в нф. Фср. Теорема об общем решении.
- •34. Задача о построении лосду, имеющей заданную фср.
- •35. Лосду с ПостК. Т. Коши-Пикара. Метод Эйлера построения фср. Случай действительных различных корней характеристического уравнения.
- •36 Лосду с ПостК. Метод Эйлера построения фср. Случай комплексных и кратных корней характеристического уравнения. Теорема об интегрируемости.
- •37. Лнсду. Т. О структуре общего решения. Некоторые свойства решений. Принцип суперпозиции.
- •38. Лнсду. Метод Лагранжа вариации произвольных постоянных для отыскания частного решения. Теорема об интегрируемости.
- •39. Лнсду с ПостК.
- •40. Динамическая интерпретация нормальной соду. Фазовое пространство. Фазовая траектория.
- •41. Автономные и неавтономные динамические системы. Свойства решений автономных динамических систем (адс). Фазовый портрет и бифуркации.
- •42. Виды траекторий адс. Сравнение геометрической интерпретации адс в фазовом и расширенном фазовом пространстве.
- •43. Устойчивость решений динамических систем. Теорема Ляпунова об устойчивости по первому приближению. Критерий Рауса-Гурвица.
- •44. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа узел.
- •45. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа седло.
- •46. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа фокус и центр.
- •47. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа вырожденный узел и дикритический узел.
- •48. Исследование устойчивости решений динамических систем с помощью функции Ляпунова.
- •49. Общие методы интегрирования сду. Метод сведения нормальной системы n ду к ду n-го порядка. Метод исключений.
- •50. Теория интегралов нормальных сду. Интеграл. Первый интеграл. НиД условие первого интеграла. Общий интеграл. Решение задачи Коши при наличии общего интеграла.
- •51. Независимость первых интегралов нормальной сду.
- •52. Теоремы о числе первых интегралов нормальной cду и числе независимых первых интегралов.
- •53. Понижение порядка сду с помощью независимых первых интегралов.
- •54. Сду в симметрической форме. Интегрируемые комбинации.
- •55. Лоду в чппп. Характеристическая система.
- •56. Лоду в чппп. Теорема об общем решении.
- •57. Лоду в чппп. Задача Коши.
- •58. Лнду в чппп. Общее решение.
- •59. Лнду в чппп. Задача Коши.
- •60. Лнду в чппп. Обобщённая задача Коши.
11. Лоду n-го порядка с ПостК. Метод Эйлера построения фср. Случай кратных корней характеристического уравнения. Теорема об интегрируемости.
- ЛОДУ с постоянными коэффициентами (1).
Метод Эйлера построения ФСР:
При : ,
При : следует искать решение в виде . Подставим в (1): , . Чтобы уравнение имело решение, должно быть корнем характеристического многочлена.
1. Если среди корней есть кратные
кратности
.
Тогда
,
.
Число решений меньше n,
значит надо искать решения в другом
виде.
,
следовательно,
- решение.
.
Корню
соответствуют
,
,
…,
.
Т.: если
имеет r корней
кратности
,
,
то оно имеет n линейно
независимых на любом
частных решений
(*)
Доказательство (от противного): рассмотрим
линейную комбинацию
.
Ее можно записать как
.
Для определенности, не уменьшая общности,
предположим, что в
есть не равный 0 коэффициент. Разделим
тождество на
,
получим:
и продифференцируем это тождество
раз по x:
.
В
найдется отличный от 0 коэффициент.
Повторим процесс. В итоге получим
,
хотя оба множителя не равны 0. получено
противоречие.
В случае действительных корней (*)
составляет ФСР на любом
.
Если есть комплексный корень
кратности
,
то есть и комплексно сопряженный корень
той же кратности. Им соответствует
совокупность
решений. Выделяя их реальную и мнимую
части, получим
действительных решений для ФСР:
,
,…,
,
,
,…,
.
Их линейная независимость доказывается
аналогично случаю простых комплексно
сопряженных корней.
Т.: общее решение ЛОДУ с постоянными
коэффициентами на любом
может быть представлена в элементарных
функциях в виде конечного числа
квазиполиномов
или
с произвольными коэффициентами.
Замечание: число квазиполиномов определяется числом различных корней . Степень квазиполинома определяется кратностью соответствующего корня. Общее число коэффициентов всех квазиполиномов равно порядку уравнения.
12. Лнду n-го порядка. Т. О структуре ор. Нек. Св-ва решений. Принцип суперпозиции.
- ЛНДУ n-го порядка.
Т. о структуре общего решения: общее
решение есть сумма
.
Доказательство: пусть известно
,
.
Сделаем замену
,
.
.
Следовательно,
и z – решение
соответствующего однородного уравнения.
Пусть
- ФСР однородного уравнения, докажем,
что
(1) - общее решение. Т.к. для (1) выполняются
условия т. Коши-Пикара, то достаточно
показать, что из
для любого набора начальных условий
можно выбрать частное решение. Составим
систему
.
Относительно
получена линейная неоднородная
алгебраическая система с определителем,
равному вронскиану для решения
и потому отличному от 0. Следовательно,
она имеет единственное решение, т.е.
существует и единственно.
Некоторые свойства решений ЛНДУ.
1) Принцип суперпозиции. Пусть
- решение
,
тогда
будет решением уравнения
.
Это означает, что
.
2) Если уравнение
- комплекснозначная функция, причем все
,
и
- действительные функции, имеет комплексное
решение
,
где
и
- действительные функции. Тогда
- решение уравнения
,
а
- решение
.
,
,
и
.
