
- •Общие сведения Сведения об эумк
- •Методические рекомендации по изучению дисциплины
- •Рабочая учебная программа
- •Учреждение образования
- •«Белорусский государственный университет
- •Информатики и радиоэлектроники»
- •Пояснительная записка
- •Содержание дисциплины
- •1. Название тем лекционных занятий, их содержание, объем в часах.
- •2 Перечень тем ипр их наименование и объем в часах
- •3 Перечень тем контрольных работ их наименование и объем в часах
- •4. Курсовая работа, ее характеристика
- •Перечень тем курсовых работ
- •5. Литература
- •5.1 Основная
- •5.2 Дополнительная
- •6. Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- •7. Учебно-методическая карта дисциплины
- •1.1.3. Способы организации знаний в базах знаний
- •1.1.4. Применение баз знаний
- •1.1.5. Виды моделей баз данных
- •2. Теория баз данных
- •2.1. История развития представлений о базах данных
- •2.1.1. Области применения вычислительной техники
- •2.1.2. Базы данных и информационные системы
- •2.1.3. История развития баз данных
- •2.1.4. Этапы развития баз данных
- •2.2. Основные термины и определения теории бд, виды бд и их отличия
- •2.2.1. Классификация бд
- •2.3. Реляционные бд, понятие сущности и связи
- •2.3.1. Общие определения
- •2.3.2. Факты о реляционной модели данных
- •2.3.3. Достоинства реляционной модели данных
- •2.3.4. Недостатки реляционной модели данных
- •2.3.5. Целостность бд
- •2.3.6. Отношения
- •2.3.7. Кортежи и отношения
- •2.3.8. Связи
- •2.3.9. Ключи отношений
- •2.3.10. Ссылочная целостность
- •2.3.11. Консистентность данных
- •2.4. Многоуровневая архитектура баз данных, понятие физического и логического уровней баз данных
- •2.4.1. Определения
- •2.4.2. Многоуровневая структура баз данных
- •Indexed р#
- •2.4.3. Постоянная и переменная длина записи
- •2.4.4. Способы представления данных
- •2.4.5. Простейший вариант – плоский файл
- •2.4.6. Факторизация по значениям поля
- •2.4.7. Индексирование по полям
- •2.4.8. Комбинация простых представлений
- •2.4.9. Использование цепочек указателей
- •2.4.10. Многосписочные структуры
- •2.4.11. Инвертированная организация
- •2.4.12. Иерархическая организация
- •2.4.14. Промежуточный итог
- •2.4.15. Методы индексирования
- •2.4.16. Индексирование по комбинации полей
- •2.4.17. Селективный индекс
- •2.4.18. Индексация по методу сжатия
- •2.4.19. Фронтальное сжатие
- •2.4.20. Сжатие окончания
- •2.4.21. Символьные указатели
- •2.4.23. Индексно-последовательная организация
- •2.4.24. Сбалансированные деревья
- •2.4.25. Ведение файла
- •2.4.26. Хэширование
- •2.5.2. Факторы эффективности хэширования
- •2.5.3. Размер участка памяти
- •2.5.4. Плотность заполнения
- •2.5.5. Алгоритмы хэширования
- •2.5.6. Размещение записей в области переполнения
- •2.5.7. Итог
- •2.6. Механизмы обработки и хранения данных в бд
- •2.6.1. Введение
- •2.6.2. Механизмы обработки и хранения данных в ms-sql 6.0-6.5
- •2.6.3. Механизмы обработки и хранения данных в ms-sql 7.0 и более поздних версиях
- •2.6.4. Метод доступа isam
- •2.6.5. Метод доспута MyIsam
- •2.6.6. Метод доступа vsam
- •2.6.7. Включение записей в *sam-файлы
- •2.6.8. Размещение индексов для *sam-файлов
- •2.6.9. Метод доступа InnoDb
- •InnoDb в MySql 5.1
- •2.7.3. Сетевые структуры
- •3.1.4. Стандарты разработки бд/субд
- •3.1.5. Sql и его стандарты
- •3.1.6. Использование методологии idef1x
- •3.1.7. Пример логической и физической схемы в ErWin
- •3.1.8. Минимальный набор стандартных таблиц
- •3.1.8. Итог
- •3.2. Средства автоматизированного проектирования бд
- •3.2.1. Введение
- •3.2.2. Case-технологии
- •3.2.3. Достоинства case-технологий
- •3.2.4. Промежуточные выводы и определения
- •3.2.5. Методологии структурного моделирования
- •3.2.6. Методология sadt (idef0)
- •3.2.7. Методологии информационного моделирования
- •3.2.8. Нотация Чена
- •3.2.9. Нотация Мартина
- •3.2.10. Нотация ide1x
- •3.2.11. Нотация Баркера
- •3.2.12. Язык информационного моделирования
- •3.2.13. Case-средства
- •3.2.14. Процесс создания модели бд в ErWin
- •3.2.15. Процесс создания модели бд в Sparx ea
- •3.2.16. Итог
- •3.3. Особенности проектирования бд на логическом и физическом уровнях
- •3.3.1. Введение
- •3.3.2. Модель бд
- •3.3.4. Банки данных
- •3.3.5. Модели данных
- •3.3.6. Этапы проектирования бд
- •3.3.7. Проектирование бд: внешний уровень
- •Изучение процессов преобразования входных данных в выходные.
- •3.3.8. Проектирование бд: инфологический уровень
- •3.3.9. Проектирование бд: даталогический уровень
- •3.3.10. Уровни sql
- •3.3.11. Проектирование бд: физический уровень
- •3.4.3. Требования нормализации
- •3.4.4. Примеры аномалий
- •3.4.5. Нормальные формы
- •3.4.6. Зависимости
- •3.4.6. Первая нормальная форма
- •3.4.7. Вторая нормальная форма
- •3.4.8. Третья нормальная форма
- •3.4.9. Нормальная форма Бойса-Кодда
- •3.4.10. Четвёртая нормальная форма
- •3.4.11. Пятая нормальная форма
- •3.4.12. Доменно-ключевая нормальная форма
- •3.4.13. Ещё раз, кратко, все нормальные формы
- •3.4.14. Ещё раз, кратко, в ErWin
- •3.4.15. Обратное проектирование бд
- •3.4.16. Итог
- •3.5. Повышение качества бд на стадии проектирования
- •3.5.1. Памятки разработчикам бд
- •3.5.2. Показатели качества бд
- •Практическая часть
- •Указания по выбору варианта
- •Индивидуальные практические работы Индивидуальная практическая работа № 1 Общие сведения
- •Практическая часть
- •Указания по выбору варианта
- •Индивидуальная практическая работа № 2 Общие сведения
- •Указания по выбору варианта
- •Практическая часть
3.4.6. Зависимости
Функциональная зависимость
Если даны два атрибута X и Y некоторого отношения, то Y функционально зависит от X, если в любой момент времени каждому значению X соответствует ровно одно значение Y.
Функциональная зависимость обозначается X à Y.
Отметим, что X и Y могут представлять собой не только единичные атрибуты, но и группы, составленные из нескольких атрибутов одного отношения.
Пример:
Номер паспорта à Фамилия
ID_сотрудника à СтажРаботыВФирме
Избыточная функциональная зависимость
Избыточная функциональная зависимость – зависимость, заключающая в себе такую информацию, которая может быть получена на основе других зависимостей, имеющихся в базе данных.
Пример:
ID_сотрудника à ПаспортныеДанные à ФИО
Полная функциональная зависимость
Функциональная зависимость X à Y является ПОЛНОЙ, если Y не зависит функционально от любого подмножества X.
Пример:
{МестоОтправки, МестоНазначения, ВидГруза, ВесГруза} à СтоимостьДоставки
Частичная функциональная зависимость
Функциональная зависимость X à Y является ЧАСТИЧНОЙ, если Y зависит функционально от некоторого подмножества X.
Пример:
{НомерКузова, НомерГосрегистрации} à Владелец
Транзитивная функциональная зависимость
Функциональная зависимость X à Y является транзитивной, если существуют зависимости X à Z и Z à Y, но отсутствует прямая зависимость X à Y.
Пример:
ID_сотрудника à ID_Офиса à ТелефонОфиса
Многозначная зависимость
Многозначная зависимость X àà Y существует в том и только в том случае, если множество значений Y, соответствующее паре значений X и Z, зависит только от X и не зависит от Z (то есть если для каждого значения атрибута X существует множество соответствующих значения атрибута Y).
В общем случае в отношении R (A,B,C) существует многозначная зависимость R.A àà R.B в том и только в том случае, когда существует многозначная зависимость R.A àR.C.
Пример:
Отношение: R(Проект, Сотрудник, Задание)
Многозначные зависимости:
Проект àà Сотрудник
Проект àà Задание
3.4.6. Первая нормальная форма
Отношение находится в первой нормальной форме (1НФ), если все атрибуты отношения являются атомарными, т.е. не имеют компонентов.
Иными словами, домен атрибута должен состоять из неделимых значений и не может включать в себя множество значений из более элементарных доменов.
В большинстве случаев выполнить это требование достаточно просто. Каждый простой атрибут должен иметь свою колонку в таблице. Однако это часто приводит к дублированию данных в отношении.
На рисунке слева представлено ненормализованное (до 1НФ) отношение, справа – нормализованное.
|
|
Рисунок 3.4.6.1 – Ненормализованное (до 1НФ) и нормализованное отношения |
Вопрос об атомарности атрибутов решается на основе семантики данных, то есть их смыслового значения.
Атрибут атомарен, если его значение теряет смысл при любом разбиении на части или переупорядочивании.
И наоборот, если какой-либо способ разбиения на части не лишает атрибут смысла, то атрибут неатомарен.
Одно и то же значение может быть атомарным или неатомарным в зависимости от смысла этого значения.
Например, значение «4286» является
атомарным, если его смысл — «пин-код кредитной карты» (при разбиении на части или переупорядочивании смысл теряется);
неатомарным, если его смысл — «чётные цифры» (при разбиении на части или переупорядочивании смысл не теряется).
Хорошим способом принятия решения о необходимости разбиения атрибута на части является вопрос: «будут ли части атрибута использоваться по отдельности?» Если да, то атрибут следует разделить (но так, чтобы сохранились осмысленные части атрибута).