Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на экзамен.docx
Скачиваний:
13
Добавлен:
23.09.2019
Размер:
1.07 Mб
Скачать

Вопрос 26

Бозоны и фермионы

Опыт убеждает нас в том, что многие элементарные частицы похожи на маленькие безостановочно вращающиеся волчки. Можно думать, что это связано с какими-то круговыми, вращательными движениями в недрах частиц. Что-то вроде "широтных" течений или "сейсмических" волн в плотных зернышках кварков, электронов и других суперэлементарных частиц. Впрочем, привычные нам наглядные образы могут лишь очень отдаленно передавать суть явлений, происходящих на столь малых расстояниях...

Но как бы там ни было, квантовые законы, которым подчиняются микропроцессы, разрешают передачу лишь дискретных порций энергии, поэтому "вращательное" движение внутри частиц тоже происходит не с любыми, а только лишь с некоторыми дискретными угловыми моментами. Их называют спинами частиц.

Если выбрать соответствующие единицы измерений (какие - для нас сейчас не важно), то спины принимают целые и полуцелые значения: О, 1, 2... и 1/2, 2/3? Частицы с целым спином называются бозонами, с полуцелым - фермионами, по именам индийского теоретика Сатиандра Бозе и итальянского физика Энрико Ферми, которые первыми стали изучать специфические особенности этих двух видов частиц (читателю придется запомнить еще два новых термина). Два класса - подобно тому, как в зоологии есть класс птиц и класс млекопитающих.

К бозонам принадлежат глюоны, частица света фотон, квант гравитационного поля гравитон, многие типы мезонов. В отряд фермионов входят кварки, электрон, нейтрино, протон с нейтроном и большинство других тяжелых частиц. Нетрудно заметить, что эти два отряда частиц играют совершенно различную роль в строении вещества. Фермионы - это "кирпичики", из которых складывается вещество, а бозоны, как правило, - кванты связывающих их калибровочных полей, так сказать, частички "силового цемента". Свойства бозонов и фермионов настолько различны, что физики долгое время были уверены в том, что это - принципиально различные частички материи.

Первые подозрения в скрытом родстве бозонов и фермионов возникли у теоретиков. Уж очень сходным был математический аппарат, описывающий эти два типа частиц! Да и вообще, если за единицу измерения взять спин, равный половине, то у бозонов будут четные целые спины, у фермионов - нечетные целые. Принципиальной разницы нет. Но почему же тогда природа разделила их непроницаемой стеной? Ведь на фоне разнообразных взаимопревращений частиц, столь характерных для микромира, фермионы всегда остаются фермионами, а бозоны - бозонами! В чем тут дело?

Сомнения усилились после открытия глюонов. Хотя это типичные бозоны и выполняют роль клея в кварковых структурах (само их название говорит об этом), они вместе с тем могут сами рождать новые глюоны, которые "склеивают" их между собой. Получается, что четкой границы между свойствами бозонных и фермионных частиц, между "веществом" и "клеем", все же нет. В этом отношении глюон - такое же удивительное создание природы, как, например, утконос, который несет яйца подобно утке и вместе с тем, как нутрия или бобер, выкармливает детенышей молоком.

А может, дело просто в том, что внутренние структуры, ответственные за величину спинов, очень жесткие и, чтобы их разрушить и превратить бозоны в фермионы или наоборот, нужны чрезвычайно высокие энергии? И тогда, возможно, обнаружится, что бозоны и фермионы действительно родственники, входящие в состав единых "супермультиплетов", - не зря их спины стоят в общем ряду: 1, 2, З...

Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

Одним из важнейших «объектов» изучения квантовой статистики, как и классической, является идеальный газ. Это связано с тем, что во многих случаях реальную систему можно в хорошем приближении считать идеальным газом. Состояние системы невзаимодействующих частиц задается с помощью так называемых чисел заполнения Ni — чисел, указывающих степень заполнения квантового состояния (характеризуется данным набором i квантовых чисел) частицами системы, состоящей из многих тождественных частиц. Для систем частиц, образованных бозонами — частицами с нулевым или целым спином (см. § 226), числа заполнения могут принимать любые целые значения: 0, 1, 2, ... (см. § 227). Для систем частиц, образованных фермионами — частицами с полуцелым спином (см. § 226), числа заполнения могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых (см. § 227). Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т. е. определить средние числа заполнения Ni.

Идеальный газ из бозонов — бозе-газ — описывается квантовой статистикой Бозе — Эйнштейна.* Распределение бозонов по энергиям вытекает из так называемого большого канонического распределения Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым (см. § 227):

(235.1)

* Ш. Бозе (1894—1974) — индийский физик.

Это распределение называется распределением Бозе — Эйнштейна. Здесь Ni — среднее число бозонов в квантовом состоянии с энергией Ei, k — постоянная Больцмана, Т—термодинамическая температура,  —химический потенциал;  не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех Ni равна полному числу частиц в системе. Здесь   0, так как иначе среднее число частиц в данном квантовом состоянии отрицательно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.

Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака.* Распределение фермионов по энергиям имеет вид

(235.2)

где Ni — среднее число фермионов в квантовом состоянии с энергией Еi,  — химический потенциал. В отличие от (235.1)  может иметь положительное значение (это не приводит к отрицательным значениям чисел Ni). Это распределение называется распределением Ферми — Дирака.

* Э. Ферми (1901—1954) — итальянский физик.

Если >>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:

(235.3)

(ср. с выражением (44.4)), где

(235.4)

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Система частиц называется вырожденной, если ее свойства существенным образом отличаются от свойств систем, подчиняющихся классической статистике. Поведение как бозе-газа, так и ферми-газа отличается от классического газа, они являются вырожденными газами. Вырождение газов становится существенным при весьма низких температурах и больших плотностях. Параметром вырождения называется величина А. При А<<1,т. е. при малой степени вырождения, распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана (235.3).

Температурой вырождения Т0 называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц, т. е. Т0 — температура, при которой вырождение становится существенным. Если Т >> Т0, то поведение системы частиц (газа) описывается классическими законами.