Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на экзамен.docx
Скачиваний:
13
Добавлен:
23.09.2019
Размер:
1.07 Mб
Скачать

Вопрос 23

С помощью этой формулы Планка мы можем получить все ответы на вопросы, связанные с твёрдым телом.

1. Классическая теория теплоёмкости. Модель независимых осцилляторов

Т вёрдое тело может быть смоделировано частицами, которые колеблются относительно положения равновесия. Частицы в узлах решётки сидят и при нагревании колеблются, поэтому простейшая модель такая: частица массы m привязана пружинкой жёсткости k к положению равновесия. На самом деле, там пусто и привязаться не к чему, мы делаем модель. Каждый атом с положением равновесия в узлах решётки мы моделируем независимым осциллятором. Энергия осциллятора . Можно доказать, что средняя кинетическая энергия осциллятора равна средней потенциальной энергии: . Из статистической физики известно, что , поэтому средняя энергия одного осциллятора равна . Тогда внутренняя энергия одного моля будет равняться , а теплоёмкость

Классическая теория говорит, что теплоёмкость одного моля любого твёрдого тела равна 3R. На самом деле, теплопроводность твёрдых тел экспериментально имеет такой вид (рис.1.2).

Элементы современной физики атомов и молекул Атом водорода в квантовой механике

При достаточно низких температурах теплоёмкость падает как T3. Классическая теория не справляется с этим делом.

Энергия осциллятора квантуется. ,  где – частота осциллятора. Если учесть квантование энергии, то средняя энергия, приходящаяся на одну степень свободы равна , а для пространственного осциллятора

Как это согласуется с классическим результатом? Очень просто – при    и  при . Это уже даёт правильное приближение, но закон T3 не получается всё равно. Это говорит о том, что модель независимых осцилляторов слишком груба.

Закон Дюлонга-Пти (Закон постоянства теплоёмкости) — эмпирический закон, согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R:

где Rуниверсальная газовая постоянная.

Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трех направлениях, определяемыми структурой решетки, причем колебания по различным направлениям абсолютно независимы друг от друга. При этом получается, что каждый атом представляет три осциллятора с энергией E, определяемой следующей формулой:

.

Формула вытекает из теоремы о равнораспределении энергии по степеням свободы. Так как каждый осциллятор имеет одну степень свободы, то его средняя кинетическая энергия равна , а так как колебания происходят гармонически, то средняя потенциальная энергия равна средней кинетической, а полная энергия - соответственно их сумме. Число осцилляторов в одном моле вещества составляет , их суммарная энергия численно равна теплоемкости тела - отсюда и вытекает закон Дюлонга-Пти.

Приведем таблицу экспериментальных значений теплоемкости ряда химических элементов для нормальных температур:

Элемент

, кал/(К·моль)

Элемент

, кал/(К·моль)

C

1,44

Pt

6,11

B

2,44

Au

5,99

Al

5,51

Pb

5,94

Ca

5,60

U

6,47

Ag

6,11

-

-

Зависимость теплоёмкости от температуры при низких температурах объясняется в моделях Эйнштейна и Дебая.

Закон Дебая утверждает, что при низких температурах теплоёмкость твёрдого тела возрастает пропорционально кубу температуры.

Закон Дебая справедлив для диэлектриков и полупроводников при температурах, намного меньших температуры Дебая, которая является характеристикой каждого конкретного вещества. Зная температуру Дебая, теплоёмкость при постоянном объёме можно оценить по формуле

,

где N — число атомов,  — постоянная Больцмана, Т — температура,  — температура Дебая.

Теплоёмкость при постоянном давлении для твёрдых тел незначительно отличается от теплоёмкости при постоянном объёме.

Петер Дебай построил теорию теплоёмкости твёрдого тела в 1912 году, усовершенствовав модель Эйнштейна, учитывая низкочастотные колебания кристаллической решётки — акустические фононы.

Фотон — безмассовая нейтральная частица. Спин фотона равен 1 (частица является бозоном), но из-за нулевой массы покоя более подходящей характеристикой является спиральность, проекция спина частицы на направление движения. Фотон может находиться только в двух спиновых состояниях со спиральностью, равной . Этому свойству в классической электродинамике соответствует поперечность электромагнитной волны.[7]

Массу покоя фотона считают равной нулю, основываясь на эксперименте и теоретических обоснованиях, описанных выше. Поэтому скорость фотона равна скорости света. По этой причине (не существует системы отсчёта, в которой фотон покоится) внутренняя чётность частицы не определена.[7] Если приписать фотону наличие т. н. «релятивистской массы» (термин ныне выходит из употребления) исходя из соотношения то она составит Фотон — истинно нейтральная частица (тождественен своей античастице)[47], поэтому его зарядовая чётность отрицательна и равна −1.

Фотон относится к калибровочным бозонам. Он участвует в электромагнитном и гравитационном взаимодействии.[7] Фотон не имеет электрического заряда и не распадается спонтанно в вакууме, стабилен. Фотон может иметь одно из двух состояний поляризации и описывается тремя пространственными параметрами — составляющими волнового вектора, который определяет его длину волны и направление распространения.

Фотоны излучаются во многих природных процессах, например, при движении электрического заряда с ускорением, при переходе атома или ядра из возбуждённого состояния в состояние с меньшей энергией, или при аннигиляции пары электрон-позитрон.[48] При обратных процессах — возбуждение атома, рождение электрон-позитронных пар — происходит поглощение фотонов.[49]

Если энергия фотона равна , то импульс связан с энергией соотношением , где  — скорость света (скорость, с которой в любой момент времени движется фотон как безмассовая частица). Для сравнения, для частиц с ненулевой массой покоя связь массы и импульса с энергией определяется формулой , как показано в специальной теории относительности.[50]

В вакууме энергия и импульс фотона зависят только от его частоты (или, что эквивалентно, от длины волны ):

,

,

и, следовательно, величина импульса есть:

,

где  — постоянная Планка, равная ;  — волновой вектор и  — его величина (волновое число);  — угловая частота. Волновой вектор указывает направление движения фотона. Спин фотона не зависит от частоты.

Классические формулы для энергии и импульса электромагнитного излучения могут быть получены исходя из представлений о фотонах. К примеру, давление излучения осуществляется за счёт передачи импульса фотонов телу при их поглощении. Действительно, давление — это сила, действующая на единицу площади поверхности, а сила равна изменению импульса, отнесённому ко времени этого изменения.[51]