Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diskretnaya_matematika_Otvety.docx
Скачиваний:
24
Добавлен:
23.09.2019
Размер:
1.12 Mб
Скачать

2. Понятие вектора.

В векторе важен порядок элементов и элементы могут совпадать и эти элементы называют координатами.

Вектор- это упорядоченный набор элементов или упорядоченное множество.

Элементы – это координаты или компоненты вектора.

Нумерация элементов производится слева направо.

Векторы (а1 , а2), (а1 , а2 , а3), (а1 , а2 , а3 ,…) называют соответственно двойка, тройка, энка.

Количество элементов в векторе называется длиной вектора.

Равные векторы: два вектора (а1 , а2 , а3 ,…, аn) и (b1 , b2 ,…, bm) равны тогда и только тогда, когда n = m и а1 = b1 , а2 = b2 , …, аn = bm .

Пример: {1, 2} = {2, 1, 1} = {2, 1}, но (1, 2)  (2, 1, 1)  (2, 1). Только (1, 2) = (1, 2).

Прямое произведение множеств.

Прямым (декартовым) произведением множеств А и В называется множество всех пар (а, в) таких, что а А и в В.

Обозначение: А В.

Если А = В, то А В =А2 и называется декартовым квадратом.

Приведем формулировку определения прямого произведения n множеств:

Прямое произведение множеств А1 , А2 , …, Аn есть множество всех векторов (а1 , а2 , а3 ,…, аn) длины n таких , что а1 А1 , а2 А2 , …, Аn .

Если А1 = А2 = … = Аn , то А1 А2 … Аn = Аn и называется декартовой степенью.

Теорема о мощности прямого произведения множеств.

Пусть - конечные множества. Соответственно мощности этих множеств равны:

Тогда мощность прямого произведения множеств равна произведению мощностей соответствующих множеств, т.е.

Доказательство методом математической индукции.

Для теорема тривиально верна. Предположим, что она верна и для и докажем ее справедливость для

По предположению . Возьмем любой вектор из и припишем справа элемент . Это можно сделать способом, т. е. получим различных векторов из .

Таким образом, из всех векторов приписыванием справа элемента из можно получить векторов, причем все они различны. Поэтому для теорема верна и, следовательно, верна для любых .

Следствие:

3. Понятие соответствия между множествами.

Определение. Соответствием между множествами А и В называется некоторое подмножество G их декартова произведения: G= А В.

Если (a;b) , то говорят, что b соответствует a при соответствии | А В.|=G . При этом множество всех таких называют областью определения соответствия , а множество соответствующих значений называются областью значений соответствия . В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.

Соответствие называется полностью определённым, если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным.

Соответствие называется сюръективным, если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .

Соответствие называется функциональным (однозначным), если любому элементу множества определения соответствует единственный элемент множества значения.

Соответствие называется инъективным, если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.

Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]