
- •1.Кинематическое описание движения (ф-лы для описания поступательного и вращательного движения).
- •2. Современная трактовка законов Ньютона. Законы Ньютона
- •3.Постулаты специальной теории относительности и геометрия пространства - времени .
- •4. Фундаментальные взаимодействия
- •5.Силы тяготения и электрические силы
- •6.Напряженность поля сил. Принцип суперпозиции силовых полей
- •7.Магнитные силы. Сила Лоренца.
- •8. Силы упругости. Деформации, их виды.
- •9. Закон Гука и модуль Юнга.
- •10.Силы трения. Виды трения. Трение покоя. Внутреннее трение
- •12. Работа и кинетическая энергия. Мощность
- •13. Теорема живых сил. Закон сохранения полной механической энергии
- •14.Момент инерции твердого тела. Момент импульса. Теорема Штейнера
- •15.Уравнение движения и условия равновесия твердого тела
- •16.Закон сохранения момента импульса Кинетическая энергия вращения
- •17. Формула Ньютона для сил внутреннего трения. Коэффициент вязкости.
- •18. Гармонические колебания
- •19. Свободные затухающие колебания.
- •20.Вынужденные колебания осциллятора под действием синусоидальной силы
- •21. Амплитуда и фаза при вынужденных колебаниях. Резонансные кривые.
- •27. Точечный источник волн. Плоская и сферическая волна.
- •28. Фазовая скорость волны. Длина волны, волновое число.
- •29. Когерентность. Длина когерентности
- •30. Интерференция плоских волн условия возникновения интерференционного максимума и минимума.
- •31. Интерференция в тонких плёнках. Просветление оптики.
- •32. Принцип Гюйгенса-Френеля
- •33. Дифракция на круглом отверстии
- •36. Дифракция Фраунгофера и спектральное разложение. Разрешающая способность и дисперсия дифракционной решетки.
- •Модель атома Бора
- •Модели атома Томсона и Резерфорда
- •39. Гипотеза ДеБройля, свойства волн ДеБройля
- •41. Гипотеза Борна, волновая функция
- •42. Принцип неразличимости микрочастиц. Бозоны и фермионы
- •43. Квантование атома водорода. Квантовые числа
- •44. Характеристики квантовых чисел. Правила отбора.
- •45. Энергетическая диаграмма водородоподобного атома.
- •46. Вырождение энергетических уровней. Эффекты Зеемана и Штарка.
- •47.Спектры двухатомных молекул. Переходы в молекулярных спектрах.
- •48. Спектры твердого тела. Энергетические зоны.
- •49. Энергетические зоны и проводимость твердых тел.
- •55.Закон поглощения радиоактивного излучения
- •56.Способы регистрации радиоактивного излучения. Счетчик Гейгера и Камера Вильсона
- •57.Диэлектрики в электростатическом поле. Поляризация диэлектриков
- •58.Диэлектрическая проницаемость и диэлектрическая восприимчивость.
- •59.Теорема Остроградского-Гаусса. Ее использование для расчета полей симметричных объектов.
- •60. Конденсаторы. Электроемкость. Емкость плоского конденсатора и уединенной сферы
- •61. Электростатические поля в проводнике. Распределение потенциала и заряда по поверхности проводника
- •71. Три вида магнетиков. Их особенности.
- •75.Индуктивность соленоида. Взаимоиндукция. Принцип работы трансформатора.
- •76.Уравнения Максвелла, их физический смысл.
- •77.Электромагнитные волны. Их свойства. Соотношения Максвелла
- •78.Макроскопическая (термодинамическая) система. Интенсивные и экстенсивные переменные
- •79.Метод молекулярной динамики. Основное уравнение молекулярно-кинетической теории.
- •80. Уравнение Ван-дер-Вальса. Изотермы Ван-дер-Вальса. Уравнение Ван-дер-Вальса. Для одного моля газа Для молей газа
- •81. Критическая изотерма, закон соответственных состояний
- •83. Первое начало термодинамики. Обоснование
- •83. Первое начало термодинамики для изопроцессов
- •84. Основы теории теплоемкости. Формула Майера
- •96. Электрический ток в газах. Самостоятельный и несамостоятельный разряд
- •Виды газовых разрядов и их применение
57.Диэлектрики в электростатическом поле. Поляризация диэлектриков
Диэлектрики- тела в которых практически отсутствуют свободные заряды.
Поляризацией диэлектриков называется процесс ориентации диполей или появления под воздействием внешнего электрического поля ориентированных по полю диполей. Соответственно трем группам диэлектриков различают три вида поляризации:
Электронная поляризация диэлектрика с неполярными молекулами, заключающаяся в возникновении у атомов индуцированного дипольного момента за счет деформации электронных орбит.
Ориентационная поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов по полю. Эта ориентация тем сильнее чем больнее напряженность эл. поля и ниже температура.
Ионная поляризация диэлектрика с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных против поля, приводящем к возникновению дипольных моментов.
58.Диэлектрическая проницаемость и диэлектрическая восприимчивость.
Безразмерная величина
называется
диэлектрической проницаемостью среды,
где æ- диэлектрическая восприимчивость
среды, характеризующая свойства
диэлектрика ; æ-величина безразмерная,
причем всегда æ больше нуля и для
большинства диэлектриков ( твердых и
жидких) составляет несколько единиц
(хотя например для спирта æ=25, для воды
æ=80)
59.Теорема Остроградского-Гаусса. Ее использование для расчета полей симметричных объектов.
Поток
вектора напряженности электростатического
поля в вакууме сквозь произвольную
замкнутую поверхность равен алгебраической
сумме заключенных внутри этой поверхности
зарядов, деленной на
.
60. Конденсаторы. Электроемкость. Емкость плоского конденсатора и уединенной сферы
Для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, иными словами, обладать большой емкостью. Эти устройства получили название конденсаторов.
Конденсатор состоит из 2 проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют : 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.
Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (1 —2) между его обкладками:
(1)Рассчитаем
емкость плоского конденсатора, состоящего
из двух параллельных металлических
пластин площадью S
каждая, расположенных на расстоянии d
друг от друга и имеющих заряды +Q
и –Q.
Если расстояние между пластинами мало
по сравнению с их линейными размерами,
то краевыми эффектами можно пренебречь
и поле между обкладками считать
однородным. Его можно рассчитать
используя формулы
и (1). При наличии диэлектрика между
обкладками разность потенциалов между
ними,
где
— диэлектрическая проницаемость. Тогда
из формулы (1), заменяя Q=S,
получим выражение для емкости плоского
конденсатора:
Для
определения емкости сферического
конденсатора, состоящего из двух
концентрических обкладок, разделенных
сферическим слоем диэлектрика, используем
формулу
для
разности потенциалов между двумя
точками, лежащими на расстояниях r1
и r2
(r2
> r1)
от центра заряженной сферической
поверхности. При наличии диэлектрика
между обкладками разность потенциалов
Подставив
это в (1), получим