
- •Кадастр физических величин.
- •7.4 Измерение коэффициента теплопроводности на базе компьютерной модели обратной задачи нестационарной теплопроводности
- •Составление системы для измерения pH. Вспомогательный электрод. Расчет pH.
- •15.4 Составление измерительной системы
- •Схемы включения тензорезисторов.
- •Расходомерные устройства дросселирующего типа. Расходомерная диафрагма, расходомерное сопло. Получение метрологической характеристики.
- •Классификация видов и методов измерений
- •Основные положения, определения и термины из области теории информации.
- •Матрицы пьезомодулей Методы расчета прямого и обратного пьезоэффекта.
- •Модель динамической характеристики термопреобразователя на базе уравнения нестационарной теплопроводности, записанная в форме конечных разностей.
- •Классификация сигналов.
- •Погрешности тензометрических измерительных преобразователей
- •Методы, устройства для измерения вязкости жидкости. Определение понятия вязкости (формула Ньютона). Теория и устройство капиллярных вискозиметров.
- •13.1 Капиллярные вискозиметры
- •Средства измерений. Основные понятия и классификация.
- •Выбор напряжений (токов) питания тензорезисторов.
- •Цветовые пирометры (пирометры спектральных отношений).
- •Структурные схемы измерительных систем.
- •Тензометрические преобразователи механических величин. Метрологическая характеристика динамометра с упругим элементом в форме стержня круглого сечения.
- •Излучение газов и паров. Распространение излучения в оптических прозрачных средах. Колориметрический измерения (варианты организации измерений, схем приборов).
- •Методы измерительных преобразований
- •1.3.2 Метод уравновешивания
- •7.1.1 Методика определения величины тэдс термоэлектрических преобразователей на основе термопар
- •Вискозиметры с падающим шариком (теория, схемы). Ротационные вискозиметры. Вискозиметры с падающим шариком
- •13.3 Ротационные вискозиметры
- •Погрешности измерений.
- •Пьезоэлектрические преобразователи. Разновидности пьезоэффекта. Анализ механизма воникновения пьезоэффекта на базе элементарной кристаллической ячейки кварца.
- •6.1 Разновидности пьезоэлектриков
- •Вибрационные (ультразвуковые) вискозиметры.
- •Оценка точности результатов прямых однократных измерений. Классификация средств измерений по обеспечиваемой точности
- •1.6 Классификация средств измерений по обеспечиваемой точности
- •Полупроводниковые термометры сопротивления. Температурный коэффициент сопротивления. Типы термисторов. Вольт-апмерные характеристики.
- •Расходомеры электромагнитного (индукционного) типа. Расходомеры индукционного типа применяются для измерения –электропроводных жидкостей (10-3-10-6 ).
- •Оценка точности многократных прямых измерений.
- •Термометры сопротивления металлические. Метрологические характеристики. Конструкции промышленных вариантов. Схемы подключений (измерительные цепи).
- •7.2.1 Подключение термометров сопротивления
- •Потенциометрические методы анализа (pH – метрия). Основы pH – метрии. Измерительный электрод (водородный, стеклянный).
- •15.1 Основы pH – метрии
- •15.2 Измерительный электрод
- •Обработка результатов прямых многократных измерений.
- •Схемы подключения термопар (измерительные цепи)
- •Схемы включения термопар
- •Яркостные пирометры.
- •Оценка точности косвенных измерений.
- •Примеры применения термисторов. Линеаризация характеристик. Интерфейс с ibm pc.
- •7.2.4 Интерфейс термисторов и ibm pc
- •Бесконтактная низкочастотная кондуктометрия. Бесконтактная высокочастотная кондуктометрия.
- •Условие компенсации:
- •Динамические погрешности звеньев измерительных систем. Апериодические звенья.
- •Конструкции термопреобразователей на основе эффекта тэдс. Варианты изготовления термопары в лаборатории.
- •Манометры пружинные. Разделительные устройства. Грузопоршневые манометры.
- •12.3 Грузопоршневые манометры
- •12.4 Разделительные устройства в системах измерения давления
- •Динамические погрешности звеньев измерительных систем.Периодические звенья.
- •Тензометрические датчики давления.
- •Термокондуктометрические и термохимические газоанализаторы.
- •Резистивный преобразователь. Эквивалентная схема Реостатные преобразователи.
- •8.2 Разновидности оптических преобразователей
- •Недостатки контактной кондуктометрии на постоянном токе (эффект поляризации электродов). Кондуктометрия на переменном токе. Четырехэлектродная измерительная ячейка.
- •Тензорезисторные преобразователи. Классификация тензорезисторов (по конструкции).
- •5.1.1 Проволочные тензорезисторы
- •5.1.2 Фольговые тензорезисторы
- •5.1.3 Пленочные фоторезисторы
- •5.1.4 Полупроводниковые тезорезисторы дискретного типа
- •5.1.5 Интегральные полупроводниковые тензорезисторы
- •Поляризационно-оптические методы анализа. Метрологические зависимости. Схема автоматического поляриметра.
- •Коэффициент тензочувствительности тензорезистора.
- •11.3 Весоизмерительные уровнемеры
- •Весовые дозаторы сыпучих материалов
- •Манометры сопротивления, емкостные, ионизационные, теплопроводности. Манометры сопротивления
- •12.6 Ёмкостные манометры
- •12.7 Ионизационные манометры
- •Область применения тензорезисторов. Тензометрические преобразователи перемещений. Схемы упругих элементов.
- •9.3.1 Ротаметры со шкалой местных показаний
- •9.3.2 Ротаметры с электрической дистанционной передачей показаний
- •Газоанализаторы оптико-акустического действия и газоанализаторы ультрафиолетового поглощения.
- •Конструкции силоизмерителей с тензочувствительными элементами.
- •Хроматографические методы анализа. Схемы хроматографов с детектором теплопроводности (катарометром) и пламенно-ионизационным детектором.
- •17.1 Хромотографической установка и ее основные элементы
- •Измерение давлений. Основные определения. Кссификации средств измерений. Жидкостные манометры.
- •12.1 Жидкостные манометры
- •Тензометрические преобразователи крутящих моментов и акселерометры.
- •5.10 Преобразователи крутящего момента
- •Эквивалентная электрическая схема пьезоэлектрического преобразователя. Анализ амплитудо-частотных характеристик пьезоэлектрических преобразователей.
- •Преобразователи (датчики) уровня резистивного, емкостного типа. Уровнемеры радиационного типа. Ультразвуковые уровнемеры.
- •Измерительная цепь может быть двух вариантов:
- •Уровнемеры радиационного типа
- •11.5 Ультразвуковые уровнемеры
- •Разновидности пьезоэлектриков. Области применения пьезоэлектрических преобразователей
- •6.2 Область применения пьезоэлектрических преобразователей
- •Ультразвуковые устройства измерения расхода
- •Конструктивное исполнение пьезоэлектрических преобразователей.
- •Преобразователи (датчики) уровня поплавкового и буйкового типа.
- •10.3 Преобразователи уровня буйкового типа
- •Тепловые преобразователи для измерения скорости (плотности) потока (термоанемометры). Конструкция, схема подключения, метрологическая характеристика.
- •Принцип действия
- •Радиационные преобразователи температуры (Радиационные пирометры).
- •Расходомерные устройства тензочувствительного типа
- •Детекторы теплопроводности для определения составов газовых смесей. Конструкция, схема подключения, анализ зависимости теплоотдачи от состава смеси.
- •Фотоэлектрические рефрактометры. Теория, метрологические характеристики. Схемы приборов.
- •Измерения потока (плотности потока) сплошной среды с помощью трубки Пито-Прандтля.
- •Расходомерные устройства турбинного (турбинно-роторного) типа.
- •Приборы для измерения концентраций дисперсной фазы в гетерогенных двухфазных системах (турбидиметры, нефелометры). Физические основы работы приборов.
- •Датчик Коултера. Геометрические характеристики дисперсных систем.
- •14.4 Геометрические характеристики дисперсных систем
Эквивалентная электрическая схема пьезоэлектрического преобразователя. Анализ амплитудо-частотных характеристик пьезоэлектрических преобразователей.
Эквивалентная
электрическая схема пьезоэлектрического
преобразователя представлена на рисунке
60, на котором
– емкость между гранями пьезоэлектрика
(емкость преобразователя),
–сопротивление преобразователя,
– емкость и сопротивление кабеля,
– емкость и сопротивление входа
измерительного прибора
|
Рисунок 60 – Эквивалентная электрическая схема пьезоэлектрического преобразователя |
Эквивалентную схему можно упростить согласно рисунку 61, где
(141)
и емкость
(142)
|
Рисунок 61 – Приведенная эквивалентная схема |
Промоделируем некоторые метрологические характеристики преобразователя.
Положим в качестве измеряемой величины некоторую силу , действующую на пьезоэлемент. Пусть это будет величина переменная и изменяющаяся по синусоидальному закону:
(143)
Обозначим через
мгновенное значение тока в цепи, его
можно определить как изменение заряда
во времени:
(144)
,
(145)
где
–
комплексное сопротивление.
Амплитудное значение выходного напряжения определяется как величина модуля, записанного выше
(146)
Амплитудо-частотная и фазо-частотная характеристики преобразователя, включенного в измерительную цепь, представлены на рисунках 62, 63:
|
Рисунок 62 |
Из приведенных
выражений следует, что напряжение на
входе усилителя не будет зависеть от
частоты только при высоких частотах
и будет равно
(147)
Из этого выражения видно, что выходное напряжение преобразователя зависит от емкости входной цепи. Поэтому если в характеристиках преобразователя указывается его чувствительность по напряжению, то обязательно должна быть указана и емкость, соответствующая этой чувствительности.
Для
расширения частотного диапазона
измеряемых величин в сторону низких
частот, очевидно, следует увеличить
постоянную времени цепи
.
Для
того чтобы получить представление о
значениях сопротивлений и емкостей, на
рисунке 63 приведены кривые 1
и 2
чувствительности
пьезоэлектрического акселерометра в
функции частоты для различных сочетаний
R
и
С.
|
Рисунок 63 |
Расширение частотного диапазона путем увеличения емкости С (кривая 2) легко осуществляется включением параллельно преобразователю конденсаторов, однако, это приводит к уменьшению выходного напряжения преобразователя. Увеличение сопротивления R приводит к расширению частотного диапазона без потери чувствительности, однако повысить сопротивление можно только путем улучшения качества изоляции и применения усилителей с высокоомным входом.
Преобразователи (датчики) уровня резистивного, емкостного типа. Уровнемеры радиационного типа. Ультразвуковые уровнемеры.
Простейшими измерительными средствами для определения уровня в резервуарах являются измерительные линейки и водомерные стекла (рисунок 137).
|
|
Рисунок 137 |
Рисунок 138 |
Для измерения уровня уровней электропроводящих жидкостей, щелочей, кислот применяют контактные уровнемеры (рисунок 138).
Для измерения уровней неэлектропроводных жидкостей часто применяют преобразователи емкостного типа, однако они применяются для электропроводящих жидкостей, когда электроды изолированы (рисунок 139).
|
Рисунок 139 |
, (246)
где – ширина пластин, - расстояние между ними.
(247)
Коаксиальные цилиндры
|
|
а) |
б) |
Рисунок 140 |
Схемы включения преобразователей