
- •Кадастр физических величин.
- •7.4 Измерение коэффициента теплопроводности на базе компьютерной модели обратной задачи нестационарной теплопроводности
- •Составление системы для измерения pH. Вспомогательный электрод. Расчет pH.
- •15.4 Составление измерительной системы
- •Схемы включения тензорезисторов.
- •Расходомерные устройства дросселирующего типа. Расходомерная диафрагма, расходомерное сопло. Получение метрологической характеристики.
- •Классификация видов и методов измерений
- •Основные положения, определения и термины из области теории информации.
- •Матрицы пьезомодулей Методы расчета прямого и обратного пьезоэффекта.
- •Модель динамической характеристики термопреобразователя на базе уравнения нестационарной теплопроводности, записанная в форме конечных разностей.
- •Классификация сигналов.
- •Погрешности тензометрических измерительных преобразователей
- •Методы, устройства для измерения вязкости жидкости. Определение понятия вязкости (формула Ньютона). Теория и устройство капиллярных вискозиметров.
- •13.1 Капиллярные вискозиметры
- •Средства измерений. Основные понятия и классификация.
- •Выбор напряжений (токов) питания тензорезисторов.
- •Цветовые пирометры (пирометры спектральных отношений).
- •Структурные схемы измерительных систем.
- •Тензометрические преобразователи механических величин. Метрологическая характеристика динамометра с упругим элементом в форме стержня круглого сечения.
- •Излучение газов и паров. Распространение излучения в оптических прозрачных средах. Колориметрический измерения (варианты организации измерений, схем приборов).
- •Методы измерительных преобразований
- •1.3.2 Метод уравновешивания
- •7.1.1 Методика определения величины тэдс термоэлектрических преобразователей на основе термопар
- •Вискозиметры с падающим шариком (теория, схемы). Ротационные вискозиметры. Вискозиметры с падающим шариком
- •13.3 Ротационные вискозиметры
- •Погрешности измерений.
- •Пьезоэлектрические преобразователи. Разновидности пьезоэффекта. Анализ механизма воникновения пьезоэффекта на базе элементарной кристаллической ячейки кварца.
- •6.1 Разновидности пьезоэлектриков
- •Вибрационные (ультразвуковые) вискозиметры.
- •Оценка точности результатов прямых однократных измерений. Классификация средств измерений по обеспечиваемой точности
- •1.6 Классификация средств измерений по обеспечиваемой точности
- •Полупроводниковые термометры сопротивления. Температурный коэффициент сопротивления. Типы термисторов. Вольт-апмерные характеристики.
- •Расходомеры электромагнитного (индукционного) типа. Расходомеры индукционного типа применяются для измерения –электропроводных жидкостей (10-3-10-6 ).
- •Оценка точности многократных прямых измерений.
- •Термометры сопротивления металлические. Метрологические характеристики. Конструкции промышленных вариантов. Схемы подключений (измерительные цепи).
- •7.2.1 Подключение термометров сопротивления
- •Потенциометрические методы анализа (pH – метрия). Основы pH – метрии. Измерительный электрод (водородный, стеклянный).
- •15.1 Основы pH – метрии
- •15.2 Измерительный электрод
- •Обработка результатов прямых многократных измерений.
- •Схемы подключения термопар (измерительные цепи)
- •Схемы включения термопар
- •Яркостные пирометры.
- •Оценка точности косвенных измерений.
- •Примеры применения термисторов. Линеаризация характеристик. Интерфейс с ibm pc.
- •7.2.4 Интерфейс термисторов и ibm pc
- •Бесконтактная низкочастотная кондуктометрия. Бесконтактная высокочастотная кондуктометрия.
- •Условие компенсации:
- •Динамические погрешности звеньев измерительных систем. Апериодические звенья.
- •Конструкции термопреобразователей на основе эффекта тэдс. Варианты изготовления термопары в лаборатории.
- •Манометры пружинные. Разделительные устройства. Грузопоршневые манометры.
- •12.3 Грузопоршневые манометры
- •12.4 Разделительные устройства в системах измерения давления
- •Динамические погрешности звеньев измерительных систем.Периодические звенья.
- •Тензометрические датчики давления.
- •Термокондуктометрические и термохимические газоанализаторы.
- •Резистивный преобразователь. Эквивалентная схема Реостатные преобразователи.
- •8.2 Разновидности оптических преобразователей
- •Недостатки контактной кондуктометрии на постоянном токе (эффект поляризации электродов). Кондуктометрия на переменном токе. Четырехэлектродная измерительная ячейка.
- •Тензорезисторные преобразователи. Классификация тензорезисторов (по конструкции).
- •5.1.1 Проволочные тензорезисторы
- •5.1.2 Фольговые тензорезисторы
- •5.1.3 Пленочные фоторезисторы
- •5.1.4 Полупроводниковые тезорезисторы дискретного типа
- •5.1.5 Интегральные полупроводниковые тензорезисторы
- •Поляризационно-оптические методы анализа. Метрологические зависимости. Схема автоматического поляриметра.
- •Коэффициент тензочувствительности тензорезистора.
- •11.3 Весоизмерительные уровнемеры
- •Весовые дозаторы сыпучих материалов
- •Манометры сопротивления, емкостные, ионизационные, теплопроводности. Манометры сопротивления
- •12.6 Ёмкостные манометры
- •12.7 Ионизационные манометры
- •Область применения тензорезисторов. Тензометрические преобразователи перемещений. Схемы упругих элементов.
- •9.3.1 Ротаметры со шкалой местных показаний
- •9.3.2 Ротаметры с электрической дистанционной передачей показаний
- •Газоанализаторы оптико-акустического действия и газоанализаторы ультрафиолетового поглощения.
- •Конструкции силоизмерителей с тензочувствительными элементами.
- •Хроматографические методы анализа. Схемы хроматографов с детектором теплопроводности (катарометром) и пламенно-ионизационным детектором.
- •17.1 Хромотографической установка и ее основные элементы
- •Измерение давлений. Основные определения. Кссификации средств измерений. Жидкостные манометры.
- •12.1 Жидкостные манометры
- •Тензометрические преобразователи крутящих моментов и акселерометры.
- •5.10 Преобразователи крутящего момента
- •Эквивалентная электрическая схема пьезоэлектрического преобразователя. Анализ амплитудо-частотных характеристик пьезоэлектрических преобразователей.
- •Преобразователи (датчики) уровня резистивного, емкостного типа. Уровнемеры радиационного типа. Ультразвуковые уровнемеры.
- •Измерительная цепь может быть двух вариантов:
- •Уровнемеры радиационного типа
- •11.5 Ультразвуковые уровнемеры
- •Разновидности пьезоэлектриков. Области применения пьезоэлектрических преобразователей
- •6.2 Область применения пьезоэлектрических преобразователей
- •Ультразвуковые устройства измерения расхода
- •Конструктивное исполнение пьезоэлектрических преобразователей.
- •Преобразователи (датчики) уровня поплавкового и буйкового типа.
- •10.3 Преобразователи уровня буйкового типа
- •Тепловые преобразователи для измерения скорости (плотности) потока (термоанемометры). Конструкция, схема подключения, метрологическая характеристика.
- •Принцип действия
- •Радиационные преобразователи температуры (Радиационные пирометры).
- •Расходомерные устройства тензочувствительного типа
- •Детекторы теплопроводности для определения составов газовых смесей. Конструкция, схема подключения, анализ зависимости теплоотдачи от состава смеси.
- •Фотоэлектрические рефрактометры. Теория, метрологические характеристики. Схемы приборов.
- •Измерения потока (плотности потока) сплошной среды с помощью трубки Пито-Прандтля.
- •Расходомерные устройства турбинного (турбинно-роторного) типа.
- •Приборы для измерения концентраций дисперсной фазы в гетерогенных двухфазных системах (турбидиметры, нефелометры). Физические основы работы приборов.
- •Датчик Коултера. Геометрические характеристики дисперсных систем.
- •14.4 Геометрические характеристики дисперсных систем
15.4 Составление измерительной системы
Электрическая цепь из стеклянного (СЭ) и каломельного вспомогательного (КЭ) показана на рисунке 197.
|
Рисунок 198 – Электрическая цепь измерительной ячейки pH - метра |
Внутри стеклянного электрода помещается вспомогательный контактный электрод, чаще всего хлорсеребряный, служащий для создания электрической цепи ячейки. Таким образом, электрическая цепь измерительной ячейки складывается из нескольких самостоятельных элементов, каждый из которых влияет на величину ее суммарной ЭДС:
где
- разность потенциалов на границе ртуть
- каломель во вспомогательном каломельном
электроде,
- диффузионный потенциал на границе
между контролируемым раствором и
вспомогательным электродом,
- разность потенциалов между контролируемым
раствором и наружной поверхностью
стеклянной мембраны электрода, являющаяся
функцией измеряемой величины
;
- разность потенциалов между внутренней
поверхностью измерительной стеклянной
мембраны и раствором соляной кислоты,
залитым в корпус стеклянного электрода;
- разность потенциалов между серебром
и хлористым серебром у вспомогательного
контактного электрода.
, (333)
где
Величина
является функцией от активных ионов
Системы из измерительного и вспомогательного электродов совместно с арматурой подразделяют на
проточные – для измерения pH в потоке (трубопроводе)
погружные – для измерения pH в оборудовании (ёмкости)
Экзаменационный билет № 2
Схемы включения тензорезисторов.
В варианте использования транзистора для измерения механических величин он наклеивается на упругий элемент и вкупе с ним являет собой первичный преобразователь деформации (сил, давлений, ускорений, перемещений).
Одна из распространенных форм упругого элемента – упругая балка. Последняя представляет собой пластину, один конец которой жестко крепится к корпусу прибора (имеет жесткую заделку), а ко второму прикладывается измеряемое усилие возможно через посредство ряда механических жестких (по сравнению с тензобалкой) элементов. Возможен вариант тензобалки с двумя опорами на концах. В этом случае усилие прикладывается в промежутке между опорами. Обязательным требованием является работа тензобалки в упругой области во всем диапазоне изменения измеряемой величины. Тензорезисторы приклеиваются на тензобалку в области максимальной чувствительности системы.
|
Вид А
|
а) |
б) |
1 – упругий элемент; 2 – корпус прибора Рисунок
20 – Одноопорная балка: а)
вид сбоку б)
вид сверху
|
На рисунке 20
показана одноопорная балка, на которую
наклеены четыре тензорезистора. К концу
балки прикладывается усилие Р, при
этом сопротивления
и
увеличиваются, а
и
- уменьшаются.
Данную балку можно представить в виде схемы моста следующего вида:
|
Рисунок 21 |
Будем
считать, что в недеформированном
состоянии
.
Такое допущение оправдано, так как
обычно на один упругий элемент наклеивают
тензорезисторы из одной партии и из
одной упаковки. В пределах одной партии
характеристики тензорезисторов
характеризуются небольшим разбросом.
Напряжение на выходе моста можно
представить как разность потенциалов
точек 2 и 4 относительно одной из точек
1 или 3. В качестве опорной точки возьмем
точку 1 и примем ее потенциал за нулевой,
тогда:
(89)
(90)
(91)
Из
схемы видно, что
Тогда
,
(92)
где
- напряжение питания.
(93)
,
(94)
где
- коэффициент тензочувствительности
(95)