
- •Кадастр физических величин.
- •7.4 Измерение коэффициента теплопроводности на базе компьютерной модели обратной задачи нестационарной теплопроводности
- •Составление системы для измерения pH. Вспомогательный электрод. Расчет pH.
- •15.4 Составление измерительной системы
- •Схемы включения тензорезисторов.
- •Расходомерные устройства дросселирующего типа. Расходомерная диафрагма, расходомерное сопло. Получение метрологической характеристики.
- •Классификация видов и методов измерений
- •Основные положения, определения и термины из области теории информации.
- •Матрицы пьезомодулей Методы расчета прямого и обратного пьезоэффекта.
- •Модель динамической характеристики термопреобразователя на базе уравнения нестационарной теплопроводности, записанная в форме конечных разностей.
- •Классификация сигналов.
- •Погрешности тензометрических измерительных преобразователей
- •Методы, устройства для измерения вязкости жидкости. Определение понятия вязкости (формула Ньютона). Теория и устройство капиллярных вискозиметров.
- •13.1 Капиллярные вискозиметры
- •Средства измерений. Основные понятия и классификация.
- •Выбор напряжений (токов) питания тензорезисторов.
- •Цветовые пирометры (пирометры спектральных отношений).
- •Структурные схемы измерительных систем.
- •Тензометрические преобразователи механических величин. Метрологическая характеристика динамометра с упругим элементом в форме стержня круглого сечения.
- •Излучение газов и паров. Распространение излучения в оптических прозрачных средах. Колориметрический измерения (варианты организации измерений, схем приборов).
- •Методы измерительных преобразований
- •1.3.2 Метод уравновешивания
- •7.1.1 Методика определения величины тэдс термоэлектрических преобразователей на основе термопар
- •Вискозиметры с падающим шариком (теория, схемы). Ротационные вискозиметры. Вискозиметры с падающим шариком
- •13.3 Ротационные вискозиметры
- •Погрешности измерений.
- •Пьезоэлектрические преобразователи. Разновидности пьезоэффекта. Анализ механизма воникновения пьезоэффекта на базе элементарной кристаллической ячейки кварца.
- •6.1 Разновидности пьезоэлектриков
- •Вибрационные (ультразвуковые) вискозиметры.
- •Оценка точности результатов прямых однократных измерений. Классификация средств измерений по обеспечиваемой точности
- •1.6 Классификация средств измерений по обеспечиваемой точности
- •Полупроводниковые термометры сопротивления. Температурный коэффициент сопротивления. Типы термисторов. Вольт-апмерные характеристики.
- •Расходомеры электромагнитного (индукционного) типа. Расходомеры индукционного типа применяются для измерения –электропроводных жидкостей (10-3-10-6 ).
- •Оценка точности многократных прямых измерений.
- •Термометры сопротивления металлические. Метрологические характеристики. Конструкции промышленных вариантов. Схемы подключений (измерительные цепи).
- •7.2.1 Подключение термометров сопротивления
- •Потенциометрические методы анализа (pH – метрия). Основы pH – метрии. Измерительный электрод (водородный, стеклянный).
- •15.1 Основы pH – метрии
- •15.2 Измерительный электрод
- •Обработка результатов прямых многократных измерений.
- •Схемы подключения термопар (измерительные цепи)
- •Схемы включения термопар
- •Яркостные пирометры.
- •Оценка точности косвенных измерений.
- •Примеры применения термисторов. Линеаризация характеристик. Интерфейс с ibm pc.
- •7.2.4 Интерфейс термисторов и ibm pc
- •Бесконтактная низкочастотная кондуктометрия. Бесконтактная высокочастотная кондуктометрия.
- •Условие компенсации:
- •Динамические погрешности звеньев измерительных систем. Апериодические звенья.
- •Конструкции термопреобразователей на основе эффекта тэдс. Варианты изготовления термопары в лаборатории.
- •Манометры пружинные. Разделительные устройства. Грузопоршневые манометры.
- •12.3 Грузопоршневые манометры
- •12.4 Разделительные устройства в системах измерения давления
- •Динамические погрешности звеньев измерительных систем.Периодические звенья.
- •Тензометрические датчики давления.
- •Термокондуктометрические и термохимические газоанализаторы.
- •Резистивный преобразователь. Эквивалентная схема Реостатные преобразователи.
- •8.2 Разновидности оптических преобразователей
- •Недостатки контактной кондуктометрии на постоянном токе (эффект поляризации электродов). Кондуктометрия на переменном токе. Четырехэлектродная измерительная ячейка.
- •Тензорезисторные преобразователи. Классификация тензорезисторов (по конструкции).
- •5.1.1 Проволочные тензорезисторы
- •5.1.2 Фольговые тензорезисторы
- •5.1.3 Пленочные фоторезисторы
- •5.1.4 Полупроводниковые тезорезисторы дискретного типа
- •5.1.5 Интегральные полупроводниковые тензорезисторы
- •Поляризационно-оптические методы анализа. Метрологические зависимости. Схема автоматического поляриметра.
- •Коэффициент тензочувствительности тензорезистора.
- •11.3 Весоизмерительные уровнемеры
- •Весовые дозаторы сыпучих материалов
- •Манометры сопротивления, емкостные, ионизационные, теплопроводности. Манометры сопротивления
- •12.6 Ёмкостные манометры
- •12.7 Ионизационные манометры
- •Область применения тензорезисторов. Тензометрические преобразователи перемещений. Схемы упругих элементов.
- •9.3.1 Ротаметры со шкалой местных показаний
- •9.3.2 Ротаметры с электрической дистанционной передачей показаний
- •Газоанализаторы оптико-акустического действия и газоанализаторы ультрафиолетового поглощения.
- •Конструкции силоизмерителей с тензочувствительными элементами.
- •Хроматографические методы анализа. Схемы хроматографов с детектором теплопроводности (катарометром) и пламенно-ионизационным детектором.
- •17.1 Хромотографической установка и ее основные элементы
- •Измерение давлений. Основные определения. Кссификации средств измерений. Жидкостные манометры.
- •12.1 Жидкостные манометры
- •Тензометрические преобразователи крутящих моментов и акселерометры.
- •5.10 Преобразователи крутящего момента
- •Эквивалентная электрическая схема пьезоэлектрического преобразователя. Анализ амплитудо-частотных характеристик пьезоэлектрических преобразователей.
- •Преобразователи (датчики) уровня резистивного, емкостного типа. Уровнемеры радиационного типа. Ультразвуковые уровнемеры.
- •Измерительная цепь может быть двух вариантов:
- •Уровнемеры радиационного типа
- •11.5 Ультразвуковые уровнемеры
- •Разновидности пьезоэлектриков. Области применения пьезоэлектрических преобразователей
- •6.2 Область применения пьезоэлектрических преобразователей
- •Ультразвуковые устройства измерения расхода
- •Конструктивное исполнение пьезоэлектрических преобразователей.
- •Преобразователи (датчики) уровня поплавкового и буйкового типа.
- •10.3 Преобразователи уровня буйкового типа
- •Тепловые преобразователи для измерения скорости (плотности) потока (термоанемометры). Конструкция, схема подключения, метрологическая характеристика.
- •Принцип действия
- •Радиационные преобразователи температуры (Радиационные пирометры).
- •Расходомерные устройства тензочувствительного типа
- •Детекторы теплопроводности для определения составов газовых смесей. Конструкция, схема подключения, анализ зависимости теплоотдачи от состава смеси.
- •Фотоэлектрические рефрактометры. Теория, метрологические характеристики. Схемы приборов.
- •Измерения потока (плотности потока) сплошной среды с помощью трубки Пито-Прандтля.
- •Расходомерные устройства турбинного (турбинно-роторного) типа.
- •Приборы для измерения концентраций дисперсной фазы в гетерогенных двухфазных системах (турбидиметры, нефелометры). Физические основы работы приборов.
- •Датчик Коултера. Геометрические характеристики дисперсных систем.
- •14.4 Геометрические характеристики дисперсных систем
Излучение газов и паров. Распространение излучения в оптических прозрачных средах. Колориметрический измерения (варианты организации измерений, схем приборов).
МСИ 3 – не надо
Экзаменационный билет № 7
Методы измерительных преобразований
Существуют два основных класса, принципиально отличающиеся друг от друга.
1.3.1 Метод прямого преобразования.
Метод прямого преобразования характеризуется тем, что все преобразования информации производятся только в одном прямом направлении.
|
Рисунок 3 – Метод прямого преобразования. |
Результирующая чувствительность всего канала, в котором используется метод прямого преобразования, определяется произведением чувствительности всех составляющих его преобразователей.
(3)
–значение
величины до и после i-го
преобразования
(4)
,
где
(5)
1.3.2 Метод уравновешивания
|
Рисунок 4 – Метод уравновешивания |
Для метода уравновешивания характерно использование двух цепей преобразователей, роли которых различны. Первая – цепь прямого преобразования (верхняя); вторая – цепь обратного преобразования (нижняя). Метод уравновешивания характеризуется тем, что посредством цепи обратного преобразования формируется величина ху однородная с входной преобразуемой величиной хвх и уравновешивающая ее. В результате на вход цепи прямого преобразования поступает только небольшая часть входной преобразуемой величины и цепь далее отслеживает неравновесие сигналов хвх и ху. Коэффициент преобразования системы kс определим из следующих соображений.
, (6)
где
- коэффициент преобразования прямой
цепи.
(7)
(8)
После подстановок и преобразований получим
,
(9)
где
- коэффициент преобразования всей
системы
ТермоЭДС преобразователи (термопары). Механизм возникновения ТЭДС в местах контакта проводников. Схемы термопарных преобразователей. Методика определения величины ТЭДС термоэлектрических преобразователей на основе термопар.
ТермоЭДС преобразователи (термопары)
Тепловые преобразователи служат для преобразования температуры в электрический сигнал. Принцип действия базируется на эффекте возникновения разности потенциалов по обе стороны от границы контакта двух проводников (полупроводников), изготовленных из различных материалов.
Механизм возникновения разности потенциалов по обе стороны от границы контактов проводников объясняется различием в плотностях электронного газа этих проводников.
|
Рисунок 67 |
Проводник 1 имеет бóльшую плотность электронного газа, чем проводник 2.
В этом случае из проводника 1 будет осуществляться переход электронов в объем проводника 2. Проводник 2 приобретает отрицательный заряд, а проводник 1– положительный. Переход электронов из области 1 в область 2 будет продолжаться до тех пор, пока возникшее электрическое поле определенной напряженности не остановит процесс.
На практике обычно измеряют разницу разности потенциалов (на границе) как минимум для двух границ раздела проводников. В дальнейшем границы раздела двух проводников будем называть спаями. Любой термоЭДС-преобразователь должен иметь как минимум два спая. Спай, воспринимающий измеряемую температуру, называется горячим или рабочим спаем. Другой спай называется холодным или опорным.
Контактные
разности потенциалов образуются в
точках 1 и 2. Если
называемая термоэлектродвижущей силой (термоЭДС). |
|
Рисунок 68 |
Для того, чтобы осуществить замеры ТЭДС, обычно включают измерительный прибор в разрыв цепи (рисунок 69).
|
1-2 –спаи термопары; 3-4 –спаи, которые возникли в местах соединения линии с проводниками термопары; 5-6 – спаи, которые возникли в местах соединения линий и клемм прибора. Рисунок 69 |