
- •1. Введение
- •2. Основные этапы статистического анализа данных
- •3. Генеральная совокупность и выборка из нее. Репрезентативность выборки
- •4. Основные способы организации выборки
- •5. Шкалы измерений
- •6. Табулирование данных
- •7. Квантиль
- •8. Графическое представление данных
- •80 Огива всегда
- •9. Меры центральной тенденции
- •10. Меры изменчивости
- •Для получения более точной меры изменчивости, которая
- •Лучше всего вычислять дисперсию с помощью компьютера, используя встроенную функцию Excel (мастер функций), которая называется Дисп (исходный диапазон).
- •11. Нормальное распределение
- •В ысота опред. , площадь под
- •12. Предварительный анализ выборки
- •13. Статистический вывод. Проверка гипотез
- •14. Общая схема проверки статистической гипотезы
- •15. Сравнение средних значений количественных признаков двух независимых выборок
- •16. Сравнение средних значений количественных признаков двух зависимых (связанных) выборок
- •17. Сравнение средних значений ранжированных признаков двух независимых выборок
- •18. Сравнение средних значений ранжированных признаков двух связанных выборок
- •19. Сравнение дисперсий двух независимых выборок
- •20. Сравнение дисперсий двух зависимых (связанных) выборок
- •22. Значимость коэффициента корреляции
- •23. Анализ взаимосвязи ранжированных признаков
- •24. Коэффициент ранговой корреляции кендалла
- •25. Анализ взаимосвязи номинальных признаков с помощью корреляционного анализа
- •26. Бисериальный коэффициент корреляции (бкк)
- •27. Ранговый бисериальный коэффициент корреляции
- •28. Анализ взаимосвязей номинальных признаков с помощью таблиц сопряженности
- •29. Однофакторный анализ (офа)
- •30. Однофакторный дисперсионный анализ (ода)
- •31. Двухфакторный анализ
- •32. Двухфакторный дисперсионный анализ (дда)
- •33. Проверка нормальности распределения исходных данных
- •Статистическая обработка исходных данных с помощью Microsoft Excel.
- •Раздел 5 предназначен для проверки равенства средних значений, но он практически не используется, т.К. Требует знания дисперсии гс, что на практике редко встречается.
- •Литература
10. Меры изменчивости
Меры центральной тенденции позволяют нам судить о концентрации наших исходных данных на числовой оси. Каждая такая мера дает значение, которое представляет в каком-то смысле все элементы выборки. В этой ситуации фактически пренебрегают различиями, существующими между отдельными элементами выборки. Поэтому для учета таких различий будем использовать некоторые другие описательные статистики, которые называются мерами изменчивости (рассеяния, разброса). Самой простой мерой изменчивости является размах выборки, для вычисления которого необходимо из максимального элемента выборки вычесть минимальный. R=xmax-xmin
Т.к. размах определяется только двумя элементами выборки, то он не учитывает распределения остальных элементов выборки. Пример: пусть первая выборка содержит значения, равномерно распределенные от 1 до 10. И всего таких значений 100. Вторая выборка содержит также 100 значений, но одно из них равно единице, еще одно равно 10, а остальные 98 значений равны 5.
1) 1….1 2….2 … 10….10
10 10 10
2) 55….55 10
98
R1выб.=10-1=9 R2выб.=10-1=9
Иногда в качестве меры изменчивости используют интерквартильный размах (между квартилями).
Q=Q3-Q1
¼
=25%
¾=75%
Q1 Q3
50% Q
1 выборка: Q1=3 Q3=8 (75%) Q=8-3=5
2 выборка: Q1=5 Q3=5 Q=0
Интерквартильный размах используется достаточно редко. Наиболее популярной мерой изменчивости является дисперсия.
х1, х2, …, хn
n
(xi-x)=0
i=1
Дисперсия.
Для учета различий между отдельными элементами выборки в качестве меры изменчивости можно было бы взять сумму отклонений каждого элемента выборки от среднего значения выборки. Однако вследствие того, что эти отклонения могут быть как положительными, так и отрицательными, то их сумма для любой выборки всегда равна 0.
Поэтому вместо суммы отклонений можно рассмотреть сумму квадратов отклонений. Однако и в этом случае имеется недостаток: такая сумма сохраняет зависимость от количества элементов в выборке. Для устранения этого недостатка мы должны были бы разделить сумму квадратов отклонений на количество элементов выборки, т.е. n, но в статистике эту сумму делят не на n, a нa n-1.
Для получения более точной меры изменчивости, которая
2
называется дисперсией Sx и вычисляется по формуле:
2 n 2
Sx=( (xi-x)) : (n-1)
i=1
n 2 2 2 2
(xi-x) = (x1-x) + (x2-x) +...+ (xn-x) (сумма квадратов отклонений)
i=1
Чем больше дисперсия выборки, тем больше разбросаны наши исходные значения по числовой оси относительно среднего значения выборки. Пример вычисления дисперсии: вычислить дисперсию для следующей выборки: 1, 3, 3, 0, 4, 1. Составим расчетную таблицу:
xi |
xi-x |
(xi-x) |
1 3 3 0 4 1 |
1-2=-1 3-2=1 3-2=1 0-2=-2 4-2=2 1-2=-1 |
1 1 1 4 4 1 |
|
=0 |
=12 |
x= (1+3+3+0+4+1):6=2 2
Sx=12: (6-1)=12:5=2,4
На практике даже для выборки, которая состоит из целых чисел, может оказаться, что среднее значение является не целым числом. В результате этого отклонения тоже будут являться дробными числами, которые нам нужно возводить в квадрат. Поэтому для упрощения вычислений на практике используют следующую формулу:
2 n 2 n 2
Sx= (n xi – ( xi) ): n (n-1)
i=1 i=1
n 2 2 2 2
xi =x1 +x2 +…+xn
i=1
n 2 2
( xi) = (x1+x2+...+xn)
i=1
Вычислим дисперсию для рассмотренной выше выборки:
xi |
хi |
1 3 3 0 4 1 |
1 9 9 0 16 1 |
xi=12 |
xi =36 |
= (216-144) : 6 5=72 :30=2,4