
- •Доктрина информационной безопасности рф: интересы, составляющие, угрозы, источники угроз, задачи и методы их решения.
- •2. Федеральный закон об информации, информационных технологиях и о защите информации: основные понятия. Закон о государственной тайне. Перечень сведений, отнесенных к государственной тайне.
- •Глава 28. Преступления в сфере компьютерной информации
- •Информация, свойства информации. Количество информации: энтропийный и тезаурусный подход. Собственная информация и энтропия, сообщение с максимальной энтропией. Двоичная энтропия.
- •3. Ценность информации изменяется во времени.
- •4. Информация покупается и продается.
- •5. Сложность объективной оценки количества информации.
- •Определение с помощью собственной информации
- •Информационная безопасность в компьютерных системах. Понятия компьютерной системы и безопасности информации. Угрозы, несанкционированный доступ, вредительское по (компьютерные вирусы)
- •Вредительские программы
- •1. Несанкционированный доступ к информации
- •Криптография: модель криптографической системы, основные понятия. Криптоанализ: классификация угроз и атак на криптосистемы. Требования, предъявляемые к криптосистемам.
- •7. Сложность алгоритма как функция размерности входных данных (символ «o»). Алгоритмы полиномиальной и экспоненциальной сложности.
- •Сложность вскрытия криптосистемы. Принцип Kerckhoffs. Атака полным перебором. Совершенная и вычислительная секретность. Понятие криптографического протокола.
- •9. Конфиденциальность. Классы шифров. Симметричная криптография и криптография с открытым ключом.
- •Популярные классы шифров Симметричный и ассиметричный классы шифров
- •10. Подстановочный шифр: понятие s-блока, стойкость к атаке полным перебором, примеры моноалфавитных и полиалфавитных шифров.
- •11. Перестановочный шифр: вектор перестановки, перестановочная матрица p и ее свойства, стойкость к атаке полным перебором, примеры шифров.
- •12. Статистические атаки на подстановочные и перестановочные шифры, частотный анализ.
- •Математическое определение
- •Избыточность естественных языков
- •Избыточность и сжатие текстов
- •14. Блочные шифры. Атака созданием кодовой книги. Режим электронной книги, режим сцепления блоков зашифрованного текста: достоинства и недостатки.
- •Основная идея
- •Режимы работы блочного шифра
- •15. Использование блочного шифра как самосинхронизирующегося поточного шифра. Режим счетчика: достоинства и недостатки.
- •17. Использование одного преобразования для шифрования и дешифрования. Сеть Feistel и шифр Feistel: достоинства, функция раунда, примеры шифров с параметрами. Эквивалентные ключи: пример.
- •Конструкция блочного шифра на основе сетей Фейстеля
- •Шифрование
- •18. Минимальное число раундов в шифре Feistel. Слабые ключи и слабые шифрующие функции.
- •19. Линейный криптоанализ блочных шифров: пример линейного приближения и вычисления вероятности приближения.
- •Принцип работы
- •Построение линейных уравнений
- •20. Разностный криптоанализ блочных шифров и атака на основе подобранного зашифрованного текста: пример восстановления ключа.
- •21. Шифр des: параметры, общая схема шифрования и дешифрования, функция раунда, алгоритм развертки ключей. Стойкость шифра des и 3des (Triple des), слабые ключи.
- •Увеличение криптостойкости des
- •Применение
- •Известные атаки на des
- •22. Шифр гост 28147-89: параметры, общая схема шифрования и дешифрования, функция раунда, алгоритм развертки ключей, использование шифра в рф.
- •Описание
- •Достоинства госТа
- •Криптоанализ
- •Критика госТа
- •Возможные применения
- •23. Шифр aes (Rijndael): параметры, общая схема шифрования и дешифрования, подстановка байтов, сдвиг строки, смешивание столбцов, смешивание с ключом раунда, особенности использования.
- •Алгоритм обработки ключа
- •24. Шифр одноразовый блокнот. Поточные шифры и задача генерации равномерно распределенных псевдослучайных чисел. Линейный конгруэнтный генератор псевдослучайных чисел: использование, криптоанализ.
- •25. Регистры сдвига с линейной обратной связью (рслос): общая схема, математическое описание, пример генерации гаммы, период, рслос с максимальным периодом, криптоанализ.
- •26. Шифр rc4 (arcfour): параметры, алгоритм развертки ключа, алгоритм генерации гаммы. Алгоритмическое и схематическое описание.
- •27. Шифр a5/1: параметры, схема, мажоритарная функция, алгоритм работы при шифровании кадра.
- •29. Криптография с открытым ключом
- •Идея криптосистемы с открытым ключом
- •Основные принципы построения криптосистем с открытым ключом
- •Криптография с несколькими открытыми ключами
- •Криптоанализ алгоритмов с открытым ключом
- •Особенности системы Применение
- •Преимущества
- •Недостатки
- •Виды симметричных шифров
- •Виды асимметричных шифров
- •30. Целые числа : делимость, свойство евклидности, алгоритм Евклида (с примером), расширенный алгоритм Евклида( с примером)
- •[Править]Обозначения
- •Связанные определения
- •Свойства
- •Алгоритм Евклида для целых чисел
- •31. Простое число. Количество простых чисел. Основная теорема арифметики.
- •Бесконечность множества простых чисел
- •32. Функция Эйлера. Вычисление функции Эйлера простого числа и произведения двух простых чисел : примеры.
- •Вычисление функции Эйлера
- •Свойства
- •33. Теорема Эйлера и ее доказательства, малая теорема Ферма : примеры.
- •Доказательства с помощью теории чисел
- •Свойства и некоторые следствия
- •Применение в криптографии
- •Введение
- •Алгоритм создания открытого и секретного ключей
- •Шифрование и дешифрование
- •Корректность схемы rsa
- •Алгоритмы факторизации
- •Экспоненциальные алгоритмы
- •Субэкспоненциальные алгоритмы
- •36. Целостность. Избыточность как способ обеспечения целостности данных. Классификация методов. Код аутентификации сообщения (имитовставка). Функция хешифорвания и ее свойства. Сжимающая функция.
- •Область использования
- •Целостность данных в криптографии
- •Схемы использования
- •Обеспечение целостности данных с использованием шифрования и mdc
- •Обеспечение целостности данных с использованием шифрации и mac
- •Неумышленные нарушения целостности
- •Аутентификация и целостность
- •37. Понятие коллизии. Парадокс дней рождения. Сравнение длины кода аутентификации сообщения (имитоставки) и длины блочного шифра. Коллизии md5
- •Поиск коллизий хеш-функций
- •Примеры
- •38. Алгоритм хеширования md5 : параметры, алгоритм забивки, алгоритм изменения переменных сцепления, раунды и операции, функции раундов.
- •Шаг 4. Вычисление в цикле
- •Шаг 5. Результат вычислений
- •Криптоанализ
- •Атаки переборного типа
- •39. Решение задачи безопасного хранения паролей в ос Windows: nt hash.
- •40. Решение задачи безопасного хранения паролей, понятие «соли».
- •42. Аутентификация сущности. Протоколы с нулевым разглашением: итеративность доказательства, пример.
- •Общая структура доказательств с нулевым разглашением
- •Злоупотребления
- •43. Инфраструктура открытых ключей (pki), сертификат X.509, центр сертификации.
- •Объекты pki
- •Основная идея
- •Описание
- •44. Аутентификация источника информации и цифровая подпись. Сходства и различия задач, решаемых с помощью функций хеширования и цифровых подписей. Постановка и верификация подписи.
- •Назначение и применение эп
- •Виды электронных подписей в Российской Федерации
- •Алгоритмы
- •Использование хеш-функций
- •Симметричная схема
- •Асимметричная схема
- •45. Алгоритм цифровой подписи rsa. Пример постановки и верификации подписи.
- •46. Одноразовые пароли. Хеш-цепочки Lamport. Примеры использования.
- •Способы создания и распространения otp
- •Реализация Математические алгоритмы
- •Синхронизированные по времени
- •Одноразовый пароль через sms
- •Одноразовый пароль на мобильном телефоне
- •Сравнение технологий
- •Стандартизация
- •Otp в рамках банковского дела
- •Связанные технологии
- •Общие сведения
- •Шесть требований Керкгоффса
- •Перебор по словарю и сложность пароля
- •Основные противодействия атакам по словарю Противодействия online атакам по словарю
- •Недостатки
- •48. Алгоритм Diffie–Hellman и задача нахождения дискретного логарифма. Пример выработки общего ключа. Атака типа «человек посередине» на алгоритм Diffie– Hellman.
- •[Править]Пример
- •[Править]Шифрование с открытым ключом
- •Криптографическая стойкость
Криптография: модель криптографической системы, основные понятия. Криптоанализ: классификация угроз и атак на криптосистемы. Требования, предъявляемые к криптосистемам.
Криптография – наука о методах обеспечения конфиденциальности, невозможность прочтения другими, контроль доступа информации, аутентичности.
Модель:С=Еке(м) – м’=Дкр(с) , где м-открытый текст, Е-шифрует, С-криптограмма, ке-ключ шифрования, Д-обратное шифрованию, кр-ключ, Е-взлом.
Симметричные криптосистемы – ключи одинаковые или один получается из второго очень легко.
Ассиметричные криптосистемы – (с открытым ключом)ключи разные и один нельзя получить из другого.
Атаки:
- на основе зашифрованного текста
- на основе открытого текста
- на основе подобранного открытого текста
- на основе подобранного зашифрованного текста
Требования:
- стойкая на любых ключах
- должна иметь достаточную сложность
7. Сложность алгоритма как функция размерности входных данных (символ «o»). Алгоритмы полиномиальной и экспоненциальной сложности.
вычислительная сложность алгоритма — это функция, определяющая зависимость объёма работы, выполняемой некоторым алгоритмом, от размера входных данных.
Теория сложности вычислений определяет NP-полные задачи, которые недетерминированная машина Тьюринга может решить за полиномиальное время, тогда как для детерминированной машины Тьюринга полиномиальный алгоритм неизвестен.
Экспоненциальная сложность или экспоненциальное время — в теории сложности алгоритмов, время решения задачи, ограниченное экспонентой от размерности задачи. Другими словами, если размерность задачи возрастает линейно, время её решения возрастает экспоненциально.
Принято считать, что алгоритмы с полиномиальной сложностью являются «быстрыми», в то время как алгоритмы, сложность которых больше полиномиальной, — «медленными». С этой точки зрения алгоритмы с экспоненциальной сложностью являются медленными. Однако, это предположение не совсем точное. Дело в том, что время работы алгоритма зависит от значения n (размерности задачи) и сопутствующих констант скрытых в O-нотации. В некоторых случаях для малых значений n полиномиальное время может превосходить экспоненциальное. Однако, для больши́х значений n время работы алгоритма с экспоненциальной сложностью существенно больше.
Сложность вскрытия криптосистемы. Принцип Kerckhoffs. Атака полным перебором. Совершенная и вычислительная секретность. Понятие криптографического протокола.
Класс сложности — это множество задач распознавания, для решения которых существуют алгоритмы, схожие по вычислительной сложности. Два важных представителя:
Класс P вмещает все те проблемы, решение которых считается «быстрым», то есть полиномиально зависящим от размера входа. Сюда относится сортировка, поиск во множестве, выяснение связности графов и многие другие.
Класс NP содержит задачи, которые недетерминированная машина Тьюринга в состоянии решить за полиномиальное количество времени. Следует заметить, что недетерминированная машина Тьюринга является лишь абстрактной моделью, в то время как современные компьютеры соответствуют детерминированной машине Тьюринга с ограниченной памятью. Таким образом, класс NP включает в себя класс P, а также некоторые проблемы, для решения которых известны лишь алгоритмы, экспоненциально зависящие от размера входа (то есть неэффективные для больших входов). В класс NP входят многие знаменитые проблемы, такие как задача коммивояжёра, задача выполнимости булевых формул, факторизация и др.
При́нцип Керкго́ффса — правило разработки криптографических систем, согласно которому в засекреченном виде держится только определённый набор параметров алгоритма, называемый ключом, а остальные детали могут быть открыты без снижения стойкости алгоритма ниже допустимых значений. Другими словами, при оценке надёжности шифрования необходимо предполагать, что противник знает об используемой системе шифрования всё, кроме применяемых ключей.
Криптографический протокол (англ. Cryptographic protocol) — это абстрактный или конкретный протокол, включающий набор криптографических алгоритмов. В основе протокола лежит набор правил, регламентирующих использование криптографических преобразований и алгоритмов в информационных процессах.
В криптографии на вычислительной сложности полного перебора основывается оценка криптостойкости шифров. В частности, шифр считается криптостойким, если не существует метода «взлома» существенно более быстрого чем полный перебор всех ключей. Криптографические атаки, основанные на методе полного перебора, являются самыми универсальными, но и самыми долгими.
В системах связи, в которых поток информационных данных непрерывен и передается с постоянной скоростью , число открытых сообщений растет во времени экспоненциально с показателем . Очевидно, что обеспечение совершенной секретности (стойкости) потребовало бы применения большого количества ключей, что еще больше усложнило бы задачу их распределения. По этой причине общепринятой считается практика разделения потока данных источника на блоки длины m символов и шифрования каждого блока с использованием одного и того же секретного ключа. Поскольку в этом случае необходимое условие совершенной секретности нарушается, то речь может идти только об условной или т.н. вычислительной (практической) секретности. Она подразумевает выбор такого ансамбля ключей, который гарантирует возможность взлома криптосистемы только ценой значительных (может быть даже нереальных) вычислительных и временных затрат.