Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MORI.doc
Скачиваний:
9
Добавлен:
20.09.2019
Размер:
259.07 Кб
Скачать

24Оценка точности результатов равноточных измерений. Арифметическая середина

 

Если имеется ряд результатов равноточных измерений l1; l2; …; ln одной и той же величины, то за окончательное значение принимают среднюю арифметическую величину L из всех результатов.

AutoShape 13 .

Если истинное значение измеряемой величины х, то абсолютные ошибки будут равны:

Δ1= l1- х;

Δ2= l2- х;

………;

Δ n= ln- х,

                                                  ________

                                               [Δ] = [l]nx.

Из суммы равенств получим, что AutoShape 14 .

В соответствии со свойством 4 случайных ошибок, с увеличением числа измерений величина AutoShape 15  при n → ∞.

Следовательно, при бесконечно большом числе измерений, среднее арифметическое L будет стремиться к истинному значению измеряемой величины х.

Величина AutoShape 16  при конечном числе измерений будет вероятнейшим значением определяемой величины, называемой арифметической серединой. Разность между результатом измерения и средним арифметическим называют уклонением от арифметической середины или вероятнейшими ошибками υ, т. е. l1 - L = υ1.

Сумма вероятнейших ошибок равняется нулю AutoShape 17 , если величина среднего арифметического не имела округлений.

В топографии и геодезии в качестве критериев точности измерений в основном применяют среднюю квадратическую ошибку и относительную ошибку.

Среднюю квадратическую ошибку отдельного результата измерения m вычисляют по формуле Гаусса: AutoShape 18 .

Формулу Гаусса можно использовать, когда известно истинное значе­ние измеренной величины, а для оценки точности величин, истинное значение которых неизвестно, применяется формула Бесселя AutoShape 19 , где υ – вероятнейшая ошибка.

Среднюю квадратическую ошибку арифметической середины М  выражают через среднюю квадратическую ошибку m отдельного изме­рения, т. е. .

Таким образом, средняя квадратическая ошибка арифметической середины из результатов равноточных измерений в AutoShape 21  раз меньше средней квадратической ошибки результата отдельного измерения. Для уменьшения ошибки измерения, например, в 2 раза, количество измерений необходимо увеличить в 4 раза.

Применительно к конкретным условиям указывают критерий отбра­ковки результатов измерений. В качестве такого критерия служит пре­дельная ошибка. Для наиболее значимых измерений применяются повы­шенные требования к точности и величину предельной ошибки прини­мают равной 2m, т. е. Δпр.= 2m (удвоенное значение средней квадратической ошибки. Для менее значимых измерений принимается величина предельной ошибки равная 3m, т. е. Δпр.=3m (утроенное значение средней квадратической ошибки).

Пример, если при угловых измерениях m = 5˝, то «по правилу 2m» отбраковываются все результаты, значения которых по абсолютной величине больше 10˝, а применительно к «правилу 3m» отбраковываются – больше 15˝.

Для суждения о точности многих измерений недостаточно определения величины абсолютной ошибки, необходимо еще знать значение самой измеряемой величины. Так, для получения представления о точности линейных, площадных и других измерений применяется относительная ошибка.

Относительная ошибка – это отвлеченное число, выражающее отношение абсолютной ошибки к результату измерения. Относительную ошибку принято выражать простой дробью, числитель которой равен единице.

AutoShape 22  – для отдельного результата измерений

 

AutoShape 23  –для  арифметической середины.

Значение знаменателя принято округлять до двух значимых цифр. Чем больше знаменатель, тем выше точность выполненных работ.

Рассмотрим пример. Измерены две линии: одна длиной 220 м со средней квадратической ошибкой AutoShape 24  0,17 м, другая – длиной 390 м со средней квадратической ошибкой  0,23 м, т. е. L1 = 220 м, m1=  0,17 м,  L2 = 390 м, m2= 0,23 м. Какая из линий измерена точнее?

Подставив результаты измерений и вычислений в вышеприведенные формулы,получим,что относительная ошибка в первом случае будет равна AutoShape 28 , а во втором – . Следовательно, вторая линия измерена точнее, несмотря на большую величину абсолютной ошибки.

5/6Cредняя квадратическая погрешность (СКП). Формулы Гаусса и Бесселя. Порядок матобработки ряда равноточных измерений. Предельная абсолютная и относительная погрешности.

Наилучшим критерием  оценки  точности  измерений  принято  считать среднюю квадратическую  погрешность  (СКП) измерения,  определяемую по формуле Гаусса:   

где Δi=li-X  (Х - истинное значение измеряемой величины, а li - результат измерения).

Так как,  в большинстве случаях истинное значение  неизвестно,  то СКП определяют по формуле Бесселя:

где ϑi=li-х (х - средняя арифметическое значение или  вероятнейшее значение измеряемой величины, а li - результат измерения).

СКП арифметической середины:

Эта формула показывает, что СКП арифметической середины в √n раз меньше СКП отдельного измерения.

На практике различают предельные и относительные погрешности. Теорией доказывается, а практикой подтверждается, что абсолютное большинство случайных погрешностей находится в интервале от 0 до m - 68% , от 0 до 2m - 95% , от 0 до 3m - 99.7%.

На практике за предельную погрешность принимают 2m, т.е. с вероятностью 95% можно утверждать, что случайные погрешности  не  превысят  величины  равной  2m.  Если  n<10 то ϑi(пред)=tB . M, где tB - коэффициент Стьюдента (таблица)

Таблица коэффициентов Стьюдента

tB

n

tB

tB

4,53

5

2,65

2,37

3,31

6

2,52

2,32

2,87

7

2,43

2,28

Рассмотрим на примере как выполняется математическая обработка результатов ряда равноточных измерений. Пусть длина линии измерена шесть раз (см.  таблицу).  Необходимо найти вероятнейшее значение измеренной величины и оценить результаты измерений.

l'=75.10 м,

x =75.10+0.37/6=75.16 м,

m =√91 / 5=4.2 см,

М = 4.2 / √6=1.7 см,

ϑi(пред)=tB . M = 2.52 . 1.7 = 4.4 см,

L = 75.16 + 0.04 м (P=95%),

Отн.погр.ΔL/L=4.4/7510=1/1700

N

l,м

E,см

ϑ,см

ϑ2

1

75.15

+5

-1

1

2

75.18

+8

+2

4

3

75.20

+10

+4

16

4

75.13

+3

-3

9

5

75.10

0

-6

36

6

75.21

+11

+5

25

Σ

37

+1

91

Матобработка ряда  измерений одной и той же величины выполняется в следующей последовательности:

- определение вероятнейшего значения измеренной величины x=Σli/n;

- оценка точности отдельного измерения

- оценка точности арифметической середины (вероятнейшего значения)

- определение окончательного результата   L = x ± tBM.

51А. Средняя квадратическая погрешность функции измеренных величин.

Пусть известна функция общего вида

z = f (x,y,...,t),

где x,y,...,t - независимые измеренные величины,  полученные с известными средними квадратическими погрешностями (СКП).

Тогда СКП функции независимых аргументов равна z корню квадратному из суммы квадратов произведений частных производных функций по каждому из аргументов на СКП соответствующих аргументов, т.е.

(*)

Если функция имеет вид

z = x + y + ...+ t,

то

Для функции

z = k1x + k2y + ...+knt,

где k1,k2,kn - постоянные величины,

9Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки.

Метод наименьших квадратов применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений.

Когда искомая величина может быть измерена непосредственно, как, например, длина отрезка или угол, то, для увеличения точности, измерение производится много раз, и за окончательный результат берут арифметическое среднее из всех отдельных измерений. Это правило арифметической середины основывается на соображениях теории вероятностей; легко показать, что сумма квадратов уклонений отдельных измерений от арифметической середины будет меньше, чем сумма квадратов уклонений отдельных измерений от какой бы то ни было другой величины. Само правило арифметической середины представляет, следовательно, простейший случай метода наименьших квадратов.

27Виды измерений По характеру зависимости измеряемой величины от времени измерения разделяются на: статические, при которых измеряемая величина остается постоянной во времени; динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени. Статическими измерениями являются, например, измерения размеров тела, постоянного давления, электрических величин в цепях с установившемся режимом, динамическими - измерения пульсирующих давлений, вибраций, электрических величин в условиях протекания переходного процесса. По способу получения результатов измерений их разделяют на: прямые; косвенные; совокупные; совместные. Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой , где  - искомое значение измеряемой величины, а  - значение, непосредственно получаемое из опытных данных. При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Косвенные - это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле , где    - функциональная зависимость, которая заранее известна,   - значения величин, измеренных прямым способом. Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка. Совокупные - это производимые одновременно измерения нескольких одноименных величин, при которых искомую величину определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. Примером совокупных измерений является определение массы отдельных гирь набора (калибровка по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь). Совместные - это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними. В качестве примера можно назвать измерение электрического сопротивления при 200С и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]