
- •Поняття економетричної моделі, її складові частини.
- •Причини, які спонукають появу випадкової складової в регресійних моделях.
- •Етапи побудови економетричної моделі.
- •Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
- •Закони розподілу ймовірностей емпіричних параметрів , їх числові характерстики та статистичні властивості.
- •Обчислення значень вибіркових дисперсій , , для парної регресії.
- •Незміщені статистичні оцінки для , , в моделі парної лінійної регресії.
- •Коефіцієнт детермінації та кореляції для моделі парної регресії. Перевірка суттєвості коефіцієнта детермінації за допомогою t-критерію.
- •Коефіцієнт детермінації та кореляції для моделі парної регресії. Перевірка суттєвості коефіцієнта детермінації за допомогою f-критерію.
- •Перевірка суттєвості оцінок параметрів на основі t-критерію.
- •Точковий та інтервальний прогноз на основі побудованої моделі парної регресії.
- •Передумови застосування методу найменших квадратів.
- •Метод найменших квадратів (мнк). Система нормальних рівнянь.
- •Оператор оцінювання мнк в матричному вигляді.
- •Властивості оцінок параметрів, знайдених за мнк.
- •Дисперсійний аналіз моделі лінійної множинної регресії.
- •Коефіцієнт множинної кореляції та детермінації та перевірка їх статистичної значущості.
- •Дисперсійно-коваріаційна матриця оцінок параметрів.
- •Довірчі інтервали для оцінок параметрів.
- •Перевірка достовірності оцінок параметрів за допомогою t -критерію.
- •Точковий та інтервальний прогноз на основі побудованої моделі лінійної множинної регресії.
- •Перевірка загальної якості моделі та рівності двух коефіціентів детермінації.
- •Поліноміальна модель. Визначення вектора статистичний аналіз моделі.
- •Аналіз моделі.Показникова модель. Визначення вектора статистичний аналіз моделі.
- •Виробнича функція Кобба-Дугласа. Визначення вектора статистичний аналіз моделі.
- •Поняття фіктивних змінних.
- •Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- •Моделі з фіктивними регресорами: моделі, що містять тільки фіктивні незалежні змінні та моделі, що містять як фіктивні, так і кількісні незалежні змінні.
- •Моделі з фіктивними залежними змінними.
- •Оцінювання параметрів моделі з фіктивними змінними.
- •Порівняння двох регресійних моделей. Тест Чоу.
- •Суть та наслідки мультиколінеарності.
- •Тестування наявності мультиколінеарності в моделі. Алгоритм Фаррара-Глобера.
- •Методи усунення мультиколінеарності.
- •Алгоритм покрокової регресії.
- •Поняття про гомо- та гетероскедастичність залишків.
- •Негативні наслідки наявності гетероскедастичності залишків в лінійних моделях.
- •Тест Гольдфельда-Квандта. Послідовність його виконання.
- •Алгоритм теста Глейсера.
- •Перевірка наявності гетероскедастичності залишків на основі теста коефіцієнта рангової кореляції Спірмена.
- •Узагальнений метод найменших квадратів для моделі з гетероскедастичністю залишків.
- •Зважений метод найменших квадратів.
- •Суть та наслідки автокореляції стохастичної складової.
- •Алгоритм Дарбіна-Уотсона для виявлення автокореляції залишків першого порядку.
- •Критерій фон Неймана.
- •Циклічний та нециклічний коефіцієнт автокореляції.
- •Узагальнений метод найменших квадратів для знаходження оцінок параметрів моделі з автокорельованими залишками.
- •Метод перетворення вихідної інформації.
- •Алгоритм методу Кочрена – Оркатта.
- •Оцінювання параметрів моделі з автокорельованими залишками методом Дарбіна.
- •Поняття часового лагу. Моделі з часовим лагом незалежних змінних.
- •Оцінювання авторегресійних моделей з часовим лагом незалежних змінних.
- •Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів.
- •Метод ковзної середньої для згладжування часового ряду.
- •Експоненціальне згладжування.
- •Аналітичні методи згладжування часового ряду.
- •Довжина часового ряду суттєво перевищує ступінь полінома , а випадкові залишки мають властивості «білого шуму», тобто
- •Стаціонарні та нестаціонарні часові ряди. Основні характеристики часових рядів.
- •Тест Дікі-Фулера.
- •Авторегресійні моделі ( ar(p)- процеси).
- •Моделі ковзного середнього (ma(q)- процеси).
- •Авторегресійні моделі ковзного середнього ( arma(p,q)- процеси).
- •Інтегровані авторегресійні моделі ковзного середнього ( arima(p,d,q)- процеси).
- •Адаптивні моделі. Схема їх побудови.
- •Поняття про коінтеграцію часових рядів.
- •Моделі коригування помилки, етапи її побудови.
- •Поняття системи економетричних рівнянь. Приклади моделей на основі системи одночасних рівнянь.
- •Структурна та зведена форми системи рівнянь.
- •Ідентифікація. Необхідна і достатня умова ідентифікації.
- •Непрямий метод найменших квадратів оцінювання параметрів системи одночасних рівнянь.
- •Оцінювання параметрів системи одночасних рівнянь двохкроковим методом найменших квадратів.
- •Трьохкроковий метод найменших квадратів.
- •Прогноз ендогенних змінних
Поняття системи економетричних рівнянь. Приклади моделей на основі системи одночасних рівнянь.
Наявність прямих і зворотних зв’язків між економічними показниками вимагає побудови економетричної моделі на основі системи рівнянь.
Приклад. Нехай треба побудувати економетричну модель, яка характеризує залежність між обсягом валового національного продукту від виробничих ресурсів: основних виробничих фондів, робочої сили і матеріальних ресурсів. У такому разі доцільно будувати економетричну модель на основі системи одночасних структурних рівнянь:
де
-
випуск продукції;
-
валовий національний продукт;
- основні виробничі фонди;
-
робоча сила;
-
матеріальні ресурси;
-
період часу.
Запишемо два перших рівняння аналітично:
де
,
,
,
,
- параметри моделі,
,
- залишки.
Отже, економетрична модель складається з трьох одночасних рівнянь, два перших є регресійними, а третє — тотожність. Оскільки вони описують економічні процеси, які відбуваються одночасно, то всі ці рівняння повинні мати спільний розв’язок.
Структурна та зведена форми системи рівнянь.
Економетрична модель у вигляді безпосередньо відображає структуру зв’язків між змінними і тому називається структурною формою економетричної моделі.
Розв’яжемо систему рівнянь відносно yst і дістанемо систему виду:
(12.3)
У матричній формі систему цих рівнянь можна переписати так:
Матриця оцінок параметрів R має вигляд:
(12.4)
де E - одинична матриця.
Щоб показати справедливість співвідношення (12.4), розв’яжемо систему рівнянь (12.2) відносно Y:
Y – AY = BX + u;
(E – A)Y = BX + u;
Y = (E – A)–1BX + u.
Враховуючи, що Y = RX + v, R = (E – A)–1B.
Вектор залишків
є лінійною комбінацією залишків
.
Економетрична модель, яка записується системою рівнянь (12.3), називається зведеною формою моделі.
Ідентифікація. Необхідна і достатня умова ідентифікації.
Проблеми чисельної оцінки параметрів в структурній формі і можливість перетворення структурної форми на зведену тісно пов’язані з поняттям ідентифікації моделі.
Необхідна умова ідентифікації системи - справедливість нерівності для кожного рівняння моделі
де
— кількість залежних ендогенних
змінних, які входять в s-те
рівняння структурної форми;
m — загальна кількість екзогенних змінних моделі;
— кількість
екзогенних змінних, які входять в s-те
рівняння структурної форми моделі.
Число
екзогенних змінних, які не входять у
s-те
рівняння структурної форми, дорівнює
.
Зауважимо, що прoблема ідентифікації стосується структурних параметрів, а не параметрів зведеної форми.
Альтернативна умова ідентифікації була записана нами в (11.10):
яка
потребує, щоб
число виключених із рівняння екзогенних
змінних було
не меншим, ніж число ендогенних
змінних мінус
одиниця.