
- •1 Метрологія як наука. Роль метрології в науково-технічному прогресі.
- •2 Фізична величина. Одиниці фв. Розмір і значення фв.
- •3 Вимірювання фв. Основне рівняння вимірювання.
- •4 Міжнародна система одиниць. Основні та другорядні одиниці. Кратні та дольні приставки.
- •5 Види вимірювань: прямі, непрямі, сумісні і сукупні.
- •6 Методи вимірювань: безпосередньої оцінки, порівняння з мірою, нульовий, диференційний
- •7 Точність, правильність, сходимість і відтворюваність вимірювань фв.
- •8 Похибка вимірювання. Абсолютна та відносна, систематична та випадкова
- •9 Основні причини виникнення і методика виключення з результатів вимірювання систематичних похибок.
- •10 Випадкові похибки вимірювання: причини виникнення. Визначення істинного значення вимірюваної величини.
- •11 Випадкові похибки вимірювання: теорема розподілу. Оцінка допустимих меж похибок вимірювання.
- •12 Засоби вимірювання (зв): міри, вимірювальні перетворювачі, вимірювальні прилади та системи.
- •13 Головні характеристики та властивості зв. Номінальне та дійсне значення фв, що відтворюється засобом вимірювання.
- •14 Вимірювальні перетворювачі: призначення, класифікація за виконуваними функціями і за видами сигналів.
- •15 Метрологічні характеристики зв: основна та додаткові похибки. Абсолютна, відносна і приведена похибки зв. Клас точності зв.
- •16 Призначення дсп, принцип побудови дсп.
- •17 Характеристика гілок дсп.
- •18 Блочно-модульний принцип побудови дсп. Агрегатні комплекси засобів вимірювань.
- •21 Апаратура для повірки зв: зразкові магазини опорів та електричні мости.
- •22.Зразкові переносні потенціометри: призначення, принцип дії, основні характеристики.
- •23 Грузопоршневі манометри мп та мікроманометри мкв: призначення, принцип дії, область застосування.
- •24 Електросиловий вимірювальний перетворювач: побудова, призначення, принцип дії, область застосування.
- •25 Пневмосиловий вимірювальний перетворювач: побудова, призначення, принцип дії, область застосування.
- •26 Пневматичний підсилювач потужності: призначення, устрій і принцип дії.
- •27 Вимірювальний перетворювач з компенсацією магнітних потоків: призначення, принцип дії, устрій і область застосування.
- •28Частотний вимірювальний перетворювач: призначення, принцип дії, принципова електрична схема, область застосування.
- •Дифтрансформаторна система дистанційної передачі вимірювальної інформації: призначення, принцип дії, принципова електрична схема.
- •Дифтрансформаторний передавальний вимірювальний перетворювач: призначення, принцип дії. Невзаємозамінювані і взаємозамінювані перетворювачі
- •31 Феродинамічна система дистанційної передачі вимірювальної інформації: призначення, принцип дії. Область застосування. Устрій феродинамічного перетворювача.
- •Міжсистемні проміжні вимірювальні перетворювачі типів епп і гте: призначення, принцип дії. Область застосування.
- •Автоматичні аналогові прилади типу диск250: призначення, принцип побудови вимірювальної схеми, основні технічні характеристики.
- •Пневматичні вторинні прилади пв: призначення, устрій, принцип дії, область застосування.
- •Класифікація засобів вимірювання температури. Рідинні термометри розширення: принцип дії, устрій, область застосування.
- •36. Манометричні термометри: принцип дії. Устрій, основні характеристики.
- •37 Термоелектричні термометри: принцип дії, устрій. Стандартні градуїровки
- •Усунення впливу температури вільних кінців тпт на результат вимірювання. Термоелектродні провода: призначення, основні типи термоелектродних проводів.
- •Внесення автоматичної поправки на температуру вільних кінців тпт. Схема мілівольтметра ш4500 з елементом кт.
- •Компенсаційний метод вимірювання термо ерс. Функціональна схема автоматичного потенціометра.
- •Принципова схема автоматичного потенціометра: принцип дії, призначення елементів схеми.
- •42 Термоперетворювачі опору: призначення, принцип дії. Стандартні градуїровки. Тпо.
- •43 Логометри: призначення, устрій, принцип дії. Вивід рівняння логометра.
- •Електричні врівноважені мости: призначення, принцип дії. Вивід рівняння врівноваженого мосту.
- •Принципова схема автоматичного врівноваженого мосту ксм2: принцип дії, призначення елементів схеми.
- •Нормуючі перетворювачі для тпт і тпо: призначення, принцип дії, основні характеристики.
- •Класифікація засобів для вимірювання тиску. Рідинні манометри: принцип дії, устрій, область застосування.
- •48 Деформаційні засоби вимірювання тиску: принцип дії, основні види чутливих елементів, область застосування.
- •49 Призначення, устрій, область застосування мембранних дифманометрів дм-3583м.
- •50 Призначення, устрій, область застосування, принцип дії перетворювачів тиску типу "Сапфір22".
- •51 Витратоміри змінного перепаду тиску: призначення, принцип дії, вивід рівняння витратоміра.
- •52 Комплект витратоміра змінного перепаду струму, призначення складових комплекту. Типи стандартних звужувальних пристроїв.
- •Витратоміри постійного перепаду тиску: принцип дії, устрій, область застосування.
- •Витратоміри змінного рівня (щільові): призначення, принцип дії, устрій, область застосування.
- •Електромагнітні (індукційні) витратоміри: призначення, принцип дії, устрій вимірювального перетворювача, область застосування.
- •56 Камерні (об'ємні) лічильники кількості речовини: принцип дії, устрій, область застосування
- •Швидкістні (турбінні) витратоміри рідин і газів: принцип дії, устрій, область застосування.
- •Класифікація засобів вимірювання рівня рідини і сипучих матеріалів. Електричні сигналізатори рівня: принцип дії, устрій, область застосування.
- •Гідростатичні рівнеміри-дифманометри: принцип дії, устрій, область застосування. Схема підключення дифманометра до. Відкритого резервуару.
- •Особливості вимірювання рівня води в барабані парового котла. Двокамерний зрівнювальний пристрій.
- •61 Особливості вимірювання рівня рідини гідростатичними рівнемірами в закритому резервуарі. Рівняння перепаду тиску на дифманометрі.
- •62 П'єзометричні рівнеміри: призначення, принцип дії, устрій, область застосування.
10 Випадкові похибки вимірювання: причини виникнення. Визначення істинного значення вимірюваної величини.
Випадкова складова похибки (ВСП) =В - це складова похибки вимiрювань, яка змінюється за повторних вимiрювань однiєi i тiєiж величини ФВ випадковим чином, і в появі різних значень якої не вдається визначити будь-яку закономірність. ВСП - це похибка, яка непередбачувана ні по знаку, ні по розміру, або недостатньо вивчена. ВСП визначаються сукупністю причин, які важко проаналізувати. Чинники, які визивають ВСП, з’являються нерегулярно i зни-
кають несподівано, або проявляються з непередбачуваною інтенсивністю.
Присутність випадкової похибки легко визначається при повторних вимiрах незмінної ФВ і проявляється у вигляді деякого розкиду результатів вимiрювань.
Головна особливість ВСП при вимірюванні є ii непередбачуваність від одного вимiрювання до iншого і не завжди можна встановити причину її виникнення.
Тому величину ВСП характеризують показом закону розподілу її ймовірності, або показом параметрів цього закону, розроблених в теоріях ймовірності та математичної статистики.
Б) Однією із різновидностей ВСП є промах – надмірна ВСП. Промах, або груба похибка – це похибка окремого результату вимірювань (РВ), яке входить в ряд вимірювань, що за даних умов різко відрізняється від інших РВ цього ряду.
Основне джерело їх виникнення – це різкі зміни умов проведення вимірювань або похибка оператора ( різка зміна напруги живлення мережі, неправильний відлік по шкалі приладу або його запис). При одноразових вимірюваннях визначити промах неможливо. Для зменшення його появи проводять 2-х – 3-х разові вимірювання, а
за результат приймають середнє значення. При багаторазових вимірюваннях для визначення промахів використовуються статистичні критерії. Промахи не враховуються при обробці результатів вимiрювань.
Визначення випадкової складової похибки (у подальшому ВСП) дещо
складніше. Для ВСП, як i для випадкової події, характерно те, що вона може з’явитись при проведенні певного вимірювання, тобто, випадкова подія може відбутися, а може i ні. У теорії ймовірності для цього використовують поняття "ймовірності" (Р), яке використовується для числової характеристики ступені можливості появи події в тих чи інших умовах, при чому подія може повторитись необмежене число разів.
Завжди, коли приводять числове значення ВСП, то вказують її ймовірність.
Імовірність указує на деякий ризик, що, наприклад, в окремих випадках
вимірювання похибка, що приведена в паспорті приладу, буде більшою. Так, якщо вказано, що абсолютна ВСП ЗВ вимірювання температури ,в=± 0,5°С із ймовірністю Р=0,95, то в цьому випадку ризик дорівнює 0,05, тобто, із 100 вимірів може бути, а може i ні, що в 5-ти вимірах похибка буде більшою ніж ± 0,5°С.
Для вимірювань характерно те, що в загальному випадку значення ВСП
теоретично може дорівнювати безмежності як зі знаком «+» так i «-» . Але така подія малоймовірна, тобто, практично не можлива, але теоретично може відбутись. Для розглянутої нами вище систематичної складової похибки (ССП) можна констатувати, що ймовірність її виникнення Р=1, тобто, завжди, коли виконуються вимірювання, присутня ССП. Якщо ймовірність Р=0, то подія практично не відбудеться ніколи. Таким чином, числова характеристика ступені
можливості появи події (ймовірність Р) знаходиться в межах від 0 (подія
практично неможлива) до 1 (подія достовірна). 0 . P. 1.
У зв'язку з тим що ймовірність появи ВСП того чи іншого значення можуть змінюватись в широких межах, то для оцінювання ВСП у метрології з теорії ймовірності запозичено і використовується поняття законів розподілу випадкових величин (ВВ). Під законом розподілу ВВ розуміється закон, який оцінює кількісно ймовірність частоти прояви ВВ у вигляді функції від можливого її значення (розміру). Якщо така функціональна залежність установлена, то говорять, що ВВ підпорядкована даному закону розподілу. В метрології ВВ - це
випадкова складова похибка (ВСП). Розрізняють інтегральний та диференційний закони розподілу ВСП.