Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат методы.docx
Скачиваний:
0
Добавлен:
17.09.2019
Размер:
153.84 Кб
Скачать

Графический метод решения задачи линейного программирования.

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

  1. На плоскости X10X2 строят прямые.

  2. Определяются полуплоскости.

  3. Определяют многоугольник решений;

  4. Строят вектор N(c1,c2), который указывает направление целевой функции;

  5. Передвигают прямую целевую функцию c1x2 + c2x2 = 0 в направлении вектора N до крайней точки многоугольника решений.

Вычисляют координаты точки и значение целевой функции в этой точке.

Алгоритмический метод.

Для усвоения симплексного метода, а также других алгоритмов, рассмотренных в последующих главах, полезно иметь представление о некоторых основных моментах, учитываемых при использовании любой вычислительной процедуры. Оценивая тот или иной вычислительный алгоритм, необходимо, в частности, рассмотреть следующие его характеристики:

Рассмотренные выше методы служат для сбора информации о субъекте труда или профессиональной среде. Вместе с тем существует ряд методов упорядочения полученной информации. Одним из таких методов является алгоритмический анализ. Алгоритм - строгая последовательность действий, которая неизбежно приводит к решению задачи определенного класса. Эта последовательность действий может иметь словесное описание, в котором представлены все элементарные действия и логические условия, определяющие порядок этих действий, а может быть описана в символической форме или в виде графика. Метод дает возможность представить совокупность действий в компактной форме и понять их закономерные связи. Благодаря своей полноценности, конкретности и систематичности алгоритмы позволяют постепенно проследить характер операций, выполняемых работниками, и установить те звенья процесса, в которых наиболее часты аварии и брак и которые необходимо рационализировать или автоматизировать в первую очередь, либо функции, требующие перераспределения или изменения.

Существуют также возможности применения алгоритмического подхода при изучении и распространении передового опыта, в процессе обучения рабочих и повышения их квалификации на производстве, для оценки рациональности размещения оборудования, для повышения качества нормирования труда и т. д.

Введение в симплексный алгоритм.

Для решения задач линейного программирования предложено немало различных алгоритмов. Однако наиболее эффективным среди них оказался алгоритм, рассмотренный ниже. При этом следует подчеркнуть, что при решении некоторых частных задач (как, например, задач, связанных с оптимизацией потоков в сетях) могут оказаться более эффективными другие алгоритмы.

Попытаемся ход рассуждений, который был в каком-то разделе учебника выше, описать словесно. Упомянутая модель содержит два уравнения. Пробные решения выбирались следующим образом: допускалось, что две переменные прини­мают некоторые положительные значения, а остальные переменные предполагались тождественно равными нулю. Стремясь к обобщению, можно предположить, что в тех случаях, когда модель содержит т уравнений, для построения пробных решений используются т пере­менных, принимающих некоторые положительные значения при нулевых значениях остальных переменных. Вначале допустим, что решение существует, причем оптимальное значение целевой функции конечно ). В этом случае вычислительная процедура будет выгля­деть следующим образом:

Шаг 1. Выберем т переменных, задающих допустимое пробное решение. Исключим эти переменные из выражения для целевой функции.

Шаг 2. Проверим, нельзя ли за счет одной из переменных, при­равненной вначале к нулю, улучшить значение целевой функции, придавая ей отличные от нуля (причем положительные) значения. Если это возможно, перейдем к шагу 3. В противном случае прекра­тим вычисления.

Шаг 3. Найдем предельное значение переменной, за счет которой можно улучшить значение целевой функции. Увеличение значения этой переменной допустимо до тех пор, пока одна из т переменных, вошедших в пробное решение, не обратится в нуль. Исключим из вы­ражения для целевой функции только что упомянутую переменную и введем в пробное решение ту переменную, за счет которой результат может быть улучшен.

Шаг 4. Разрешим систему т уравнений относительно переменных, вошедших в новое пробное решение. Исключим эти переменные из выражения для целевой функции. Вернемся к шагу 2.

Важно отметить, что при однозначном понимании данного пред­писания предложенный алгоритм действительно приводит к опти­мальному решению для любой модели линейного программирования за конечное число итераций. Такой способ решения задач линей­ного программирования часто называют симплексным алгорит­мом.

Обратимся вначале к одной простой задаче, не имеющей никаких «аномалий», и попытаемся с ее помощью получить общее представ­ление о симплексном методе. К более подробному анализу данного метода вернемся несколько позже.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.