Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л-3СС и СК.doc
Скачиваний:
15
Добавлен:
16.09.2019
Размер:
1.37 Mб
Скачать

5. Преобразователи сигналов

Для связи цифровых систем с контрольно-измерительной аппаратурой используются аналого-цифровые (АЦП) и цифро-аналоговые (ЦАП) преобразователи. Как ЦАП, так и АЦП выпускаются в интегральном исполнении. В маркировке микросхем ЦАП используются буквы ПА, а микросхем АЦП – буквы ПВ.

5.1. ЦАП

ЦАП преобразуют цифровую форму представления информации в аналоговую.

П ринцип цифро-аналогового преобразования состоит в суммировании эталонных токов, пропорциональных весовым коэффициентам двоичных разрядов. Технически суммирование токов реализуется резистивной матрицей с взвешенными резисторами или с резистивной сеткой R-2R.

Матрица с взвешенными резисторами представляет собой цепочки двоично-взвешенных по параметру резисторов (рис. 56). Токи в ветвях матрицы пропорциональны весовым коэффициентам двоичных разрядов: In-1 = Uоп / R, In-2 = Uоп / 2R = In-1 /2, …, I0 = In-1 /2n-1. Токовые переключатели управляются соответствующими разрядами входного двоичного набора. При нулевом значении разряда переключатель замкнут на землю, а при единичном – подключает соответствующую ветвь матрицы к выходной цепи. Таким образом, IВЫХ обратно пропорционален десятичному числу, эквивалентному данному двоичному набору, управляющему токовыми переключателями.

Матрица с взвешенными резисторами большой разрядности трудно реализовать в интегральном исполнении из-за широкого диапазона значений параметров резисторов. Поэтому в интегральных ЦАП используется матрица с резистивной сеткой R-2R, в которой применяются резисторы лишь двух параметров – R и 2R.

К аждая ветвь матрицы R-2R (рис. 57) состоит из двух параллельно включенных резисторов параметром 2R. Следовательно, ток, втекающий в каждую ветвь, уменьшается вдвое: In-1 = UОП/2R, In-2 = In-1/2, …, I0 = In-1/2n-1. Таким образом, токи в ветвях, как и прежде, обратно пропорциональны весовым коэффициентам двоичных разрядов.

Для преобразования тока в напряжение к выходу ЦАП подключают усилитель. Кроме того, работа ЦАП синхронизируется тактовыми импульсами, что обусловливает ступенчатую форму выходного напряжения. Для преобразования ступенчатого сигнала в непрерывный сигнал после усилителя устанавливают фильтр нижних частот.

Промышленностью выпускаются микросхемы ЦАП разрядностью от 6 до 18. Полярность выходного тока в двухполярных ЦАП определяется значением старшего разряда входного двоичного набора.

5.2. АЦП

АЦП преобразует аналоговую форму представления информации в цифровую. При этом в АЦП происходят процедуры дискретизации и последующего квантования входного напряжения.

В зависимости от метода преобразования различают АЦП последовательного счёта, последовательного приближения и параллельного действия.

АЦП последовательного счёта реализуются с промежуточным преобразованием входного напряжения чаще всего во временной интервал. Одним из распространенных АЦП этого типа являются АЦП с однотактным интегрированием (рис. 58).

При пуске преобразователя снимается сигнал Uy запрета с входа R счётчика и на короткое время замыкается ключ, обеспечивая заряд конденсатора до данного мгновенного значения входного напряжения. После размыкания ключа конденсатор сохраняет заряд в течение цикла преобразования. Суммирующий счётчик начинает заполняться тактовыми импульсами с частотой следования FT, обусловливая на выходе ЦАП (В/А) линейно нарастающее напряжение ступенчатой формы. Когда это напряжение становится равным напряжению Uc на конденсаторе, аналоговый компаратор F переключается, формируя тем самым сигнал записи в буферный регистр двоичного числа, сформированного счётчиком к этому моменту времени: N2(t1) = (t1–t0)FT = 2nUвх(t0)/Umax , где n – число разрядов счетчика, а Umax – наибольшее допустимое значение входного аналогового напряжения. Далее интегрирование продолжается и в момент переполнения счётчика на его R-входе устанавливается сигнал запрета. На этом цикл преобразования заканчивается, хотя тут же может начаться вновь.

О сновным недостатком АЦП последовательного счёта является низкое быстродействие (длительность цикла преобразования ТЦ = 2n / FT), что существенно ограничивает полосу частот обрабатываемого сигнала.

А ЦП последовательного приближения использует принцип перерегулирования. В таких АЦП (рис. 59) счётчик заменён регистром последовательного приближения (РПП).

РПП представляет собой набор D-триггеров, входы С которых соединены параллельно. До пуска АЦП все триггеры РПП находятся в нулевом состоянии. С пуском АЦП по фронту первого тактового импульса к информационному входу РПП подключается D-вход триггера старшего разряда с одновременной установкой этого триггера в состояние единицы. В результате на выходе ЦАП формируется напряжение U1 = 0,5Umax. Это напряжение сравнивается компаратором с напряжением на конденсаторе. По срезу того же тактового импульса результат сравнения с выхода компаратора записывается в триггер старшего разряда. Таким образом, состояние старшего триггера остается равным 1, если U1  UC и изменяется на нулевое, если U1 > UC. По фронту второго тактового импульса к информационному входу РПП подключается D-вход следующего, более младшего триггера, с одновременной установкой его в нулевое состояние.

МПС

В основе построения микропроцессорных систем (МПС) обработки информации лежит модульный принцип.

Модулем микропроцессорной системы является её функциональный блок, выполненный в виде конструктивно законченного устройства – обычно в виде одной или нескольких БИС либо в виде плат.

Модули соединяются между собой посредством специальных устройств, называемых интерфейсами.

Основными модулями МПС являются однокристальный микропроцессор (МП), постоянная и оперативная (основная) памяти, устройства ввода-вывода информации и блоки управления (контроллеры).

Суть проектирования микропроцессорных систем на основе выбранного однокристального микропроцессора состоит в следующем:

  1. выбор внешних устройств, предназначенных для связи МП с устройствами ввода-вывода информации;

  2. организация связи этих устройств с микропроцессором;

  3. выбор ёмкости памяти для размещения программы и промежуточных данных, а также способа её организации;

  4. программирование МП на выполнение требуемых функций при известной конфигурации МПС с использованием системы команд МП.

Эти вопросы мы и рассмотрим в данной части курса ЦУ и МП.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]