
- •Предмет, содержание и задачи «Неорганической химии»
- •Химия как наука естествознания. Основная проблема химии и общие способы её решения.
- •Химия и переработка продуктов общественного питания.
- •Основные химические законы. Химический эквивалент. Закон эквивалентов. Определение молярных масс газов.
- •5.Уровни структурной организации материи. Двойственная природа микрочастиц (принципы и постулаты квантовой механики)
- •6.Характеристика состояния электрона в атоме. Правила и порядок заполнения атомных орбиталей.
- •7.Периодическая система химических элементов им. Д. И. Менделеева.
- •8.Целостные свойства атомов - масса, размер, устойчивость, их изменение по периодам и группам.
- •9.Природа и образование химической связи: метод молекулярных орбиталей (ммо). Энергия и длина связи.
- •10.Природа и образование химической связи: метод валентных связей (мвс). Ковалентная связь. Свойства ковалентной связи. Неполярная и полярная ковалентная связь.
- •12.Ионная связь. Свойства ионной связи. Свойства веществ с ионным типом связи.
- •13.Межмолекулярные взаимодействия: электростатическая, донорно-акцепторная, водородная связь и их влияние на свойства веществ.
- •14.Строение вещества в конденсированном состоянии. Зависимость физических свойств от типа химической связи в молекулах, между молекулами и ионами.
- •15.Комплексные соединения: состав, номенклатура и классификация. Применение и значение комплексных соединений.
- •16.Теории химической связи в комплексных соединениях: мвс, ммо и теория кристаллического поля (ткп).
- •18.Растворы и их классификация. Способы выражения состава растворов. Идеальные и неидеальные растворы.
- •19.Растворы электролитов. Слабые и сильные электролиты. Ионные реакции в растворах электролитов.
- •20.Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Значение pH в производстве пищевых продуктов и непродовольственных товаров.
- •21.Гидролиз солей. Типичные случаи гидролиза солей.
- •22.Буферные растворы. Значение буферных растворов в природе и технике.
- •23.Понятие термодинамической системы. Функции состояния. Тепловой эффект химических процессов и изменение энтальпии.
- •24.Понятие об энтропии. Направленность химических процессов.
- •25.Скорость химических реакций: общие понятия, закон действующих масс, правило Вант-Гоффа и уранение Аррениуса.
- •26.Химическое равновесие, принцип Ле Шателье.
- •29.Свойства неметаллов и их соединений. Электронная структура неметаллов. Сродство к электрону. Электроотрицательность. Изменение свойств неметаллов по периодам и группам.
- •33.Химические свойства металлов. Сравнительная активность металлов. Коррозия металлов. Влияние различных факторов на скорость коррозии. Методы борьбы с коррозией.
- •34.Металлы и их соединения в производстве продуктов общественного питания. Макро и микроэлементы. Ксенобиотики.
- •Предмет, содержание и задачи «Неорганической химии»
- •2.Химия как наука естествознания. Основная проблема химии и общие способы её решения.
- •3.Химия и переработка продуктов общественного питания.
33.Химические свойства металлов. Сравнительная активность металлов. Коррозия металлов. Влияние различных факторов на скорость коррозии. Методы борьбы с коррозией.
Химические свойства металлов:
В химическом отношении все металлы характеризуются сравнительной легкостью отдачи валентных электронов и способностью образовывать положительно заряженные ионы. Следовательно, металлы в свободном состоянии являются восстановителями.
Восстановительная способность различных металлов неодинакова и определяется положением в электрохимическом ряду напряжения металлов:
Li K Rb Cs Ca Na Mg Al Mn Zn Cr Cr Fe Ni Sn Pb Cu Hg Ag Pt Ag Pt Au
Металлы размещены в порядке убывания их восстановительных свойств и усиления окислительных свойств их ионов. Этот ряд характеризует химическую активность металлов только в окислительно-восстановительных реакциях, протекающих в водной среде.
Характерными свойствами для металлов являются следующие:
Восстановление неметаллов Реакции с галогенами и кислородом воздуха протекают с различными скоростями и при различных температурах с разными металлами. Так, щелочные металлы легко окисляются кислородом воздуха и взаимодействуют с простыми веществами, железо и медь взаимодействуют с простыми веществами только при нагревании, золото и платиновые металлы не окисляются вообще. Многие металлы образуют на поверхности оксидную пленку, которая защищает их от дальнейшего окисления.
2Мg + О2 = 2МgО
4Аl + ЗО2 = 2А12О3
2К + Сl2 = 2КСl
Менее энергично металлы взаимодействуют с серой:
Сu + S = СuS
Fе + S = FеS
Трудно вступают в реакцию с азотом и фосфором:
ЗМg + N2 = Мg3N2 (нитрид магния)
ЗСа + 2Р = Са3Р2 (фосфид кальция)
Активные металлы взаимодействуют с водородом:
Са + Н2 = СаН2 (гидрид кальция)
Взаимодействие с водой
Активные металлы (щелочные металлы) взаимодействуют с водой при обычных условиях с образованием гидроксидов и выделением водорода:
2Nа + 2Н2О == 2NаОН + Н2
Са + 2Н2О = Са(ОН)2 + Н2
2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2
Сравнительная активность металлов:
Основополагающим звеном для понимания электрохимических процессов является ряд напряжения металлов. Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами:
Li, Rb, К, Ва, Sr, Са, Mg, Al, Be, Mn, Zn, Cr, Ga, Fe, Cd, Tl, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au.
Так выглядит, по новейшим представлениям, ряд напряжений для важнейших металлов и водорода . Если из двух любых металлов ряда изготовить электроды гальванического элемента, то на предшествующем в ряду материале появится отрицательное напряжение.
Величина напряжения (электрохимический потенциал) зависит от положения элемента в ряду напряжении и от свойств электролита.
Сущность ряда напряжения установим из нескольких простых опытов, для которых нам понадобятся источник тока и электрические измерительные приборы.
Коррозия металлов:
Корро́зия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 6Н2О + ЗО2 = 4Fe(OH)3. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной.
В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.
Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. [2] Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, — коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.
Виды коррозии:
Химическая коррозия — это процесс взаимодействия металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают единовременно в одном акте. Продукты взаимодействия пространственно не разделены.
Электрохимическая коррозия — это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала.
Влияние различных факторов на скорость коррозии.
Наиболее важными факторами, определяющими скорость атмосферной коррозии являются: влажность атмосферы; состав атмосферы; суммарная длительность пребывания пленки влаги, образовавшейся на поверхности металла; ее химический состав; температура воздуха.
Современная защита металлов от коррозии базируется на следующих методах:
повышение химического сопротивления конструкционных материалов,
изоляция поверхности металла от агрессивной среды,
понижение агрессивности производственной среды,
снижение коррозии наложением внешнего тока (электрохимическая защита).