
- •1.Способи адресації
- •3.Пряма адресація пам'яті. .
- •6. Сторінкова пам'ять.
- •7.Сегмента адресація.
- •8. Опосередкована адресація з масштабуванням
- •9.Адресація по базі з сувом.
- •10.Адресація по базі з індексуванням
- •11. Адресація по базі з індексуванням та масштабуванням
- •12.Вирівнювання даних та коду.
- •13. Регістри загального призначення
- •14. Сегментні регістри.
- •15.Індексні регістри.
- •16. Спеціальні регістри
- •17. Флаги ознак.
- •18. Регистры управления (Control Registers)
- •19.20. Стек, регітсри стека.
- •22. Флаг нуля zf
- •23. Флаг знака sf
- •25. Флаг четности.
- •26. Флаг полупереносу.
- •27. Флаг трассировки.
- •28. Флаг напрямку.
- •29. Флаг переривание.
- •35. Арифметические команды
- •36. Команди блочної обробки даних
- •37. Команды ввода и вывода
- •38. Команды управления флагами
- •39. Команда пересылки данных: возможности и ограничения
- •40. Команди керування
- •41. Стек математичного співпроцесора
- •42.Команди пересилки співпроцесора
- •43. Арифметические команды сопроцессора
- •46. Різновиди чисел
- •47. Способи округлення
- •48.Трансцендентні команди
- •49. Команди завантаження констант співпроцесора
- •50. Порівняння чисел з плаваючою комою
- •51. Структура жёсткого диска
- •58. Структура каталогов Linux
- •59. Структура ufs
- •60. Суперблок. Ufs
- •61. Индексный дескриптор ufs
- •62. Основні механізми передачі параметрів
- •63. Основні місця передачі параметрів
- •64. Вкладені обчислення
- •65. Різновиди комбінацій сегментів
- •66. Порядок завантаження сегментів, директиви
- •67. Оптимізація обчислень
- •68. Математична оптимізація
- •69. Алгоритмічна оптимізація
- •70 .Низькорівнева оптимізація
- •71. Основні методи алгоритмічної оптимізації
- •72. Основні рекомендації низького рівня
- •74. Особенности архитектуры процессоров Pentium Pro и Pentium II
- •76. Конвеєр fpu
- •77. Принципи роботи кешу
- •79. Регистры управления (Control Registers)
- •80. Індексні регістри дескрипторів
- •81. Віртуалізація пам’яті
- •82. Переривання, маскування та обробка.
- •84. Кеш з зворотнім записом
- •85. Кеш з відкладеним записом
- •86. Наскрізний кеш
- •87. Кеш читання
- •88. Повністю асоціативний кеш
- •91. Структура кешу
- •92. Теги, призначення
- •93. Конвеєри mmx та sse
19.20. Стек, регітсри стека.
Стек в інформатиці та програмуванні — різновид лінійного списку, структура даних, яка працює за принципом (дисципліною) «останнім прийшов — першим пішов» (LIFO, англ. last in, first out). Всі операції (наприклад, видалення елементу) в стеку можна проводити тільки з одним елементом, який знаходиться на верхівці стеку та був введений в стек останнім.
Стек можна розглядати як певну аналогію до стопки тарілок, з якої можна взяти верхню, і на яку можна покласти верхню тарілку (інша назва стеку — «магазин», за аналогією з принципом роботи магазину в автоматичній зброї)
Операції зі стеком
Виконання операції push
push ("заштовхнути елемент"): елемент додається в стек та розміщується в його верхівці. Розмір стеку збільшується на одиницю. При перевищенні розміру стека граничної величини, відбувається переповнення стека (англ. stack overflow)
pop ("виштовхнути елемент"): отримує елемент з верхівки стеку. При цьому він видаляється зі стеку і його місце в верхівці стеку займає наступний за ним відповідно до правила LIFO, а розмір стеку зменшується на одиницю. При намаганні "виштовхнути" елемент з вже пустого стеку, відбувається ситуація "незаповнення" стеку (англ. stack underflow)
Кожна з цих операцій зі стеком виконується за фіксований час O(1) і не залежить від розміру стеку.
Додаткові операції (присутні не у всіх реалізаціях стеку):
isEmpty: перевірка наявності елементів в стеку; результат: істина (true), коли стек порожній.
isFull: перевірка заповненості стека. Результат: істина, коли додавання нового елементу неможливе.
clear: звільнити стек (видалити усі елементи).
top: отримати верхній елемент (без виштовхування).
size: отримати розмір (кількість елементів) стека.
swap: поміняти два верхніх елементи місцями.
Організація в пам'яті комп'ютера
Стек може бути організований як масив або множина комірок в певній області комп'ютера з додатковим зберіганням ще й вказівника на верхівку стека. Заштовхування першого елемента в стек збільшує адресу вказівника, виштовхування елементу зменшує її. Таким чином, адреса вказівника завжди відповідає комірці масиву, в якій зараз знаходиться верхівка стеку.
Багато процесорів ЕОМ мають спеціалізовані регістри, які використовуються як вказівники на верхівку стеку, або використовують деякі з регістрів загального вжитку для цієї спеціальної функції в певних режимах адресації пам'яті.
Приклади застосування
Калькулятори, які використовують зворотню польську нотацію, використовують стек для збереження даних обчислень.
Існують «стеко-орієнтовані» мови програмування (Forth, PostScript), які використовують стек як базову структуру даних при виконанні багатьох операцій (арифметичних, логічних, вводу-виводу тощо).
Стеко-орієнтованими є деякі з віртуальних машин, наприклад віртуальна машина Java.
Компілятори мов програмування використовують стек для передавання параметрів в процесі виклику підпрограм, процедур та функцій. Спеціалізований стек використовується також для збереження адрес повернення з підпрограм.
Реалізація базових алгоритмів
На мовах програмування високого рівня, стек може бути реалізований за допомогою масиву та додаткової змінної:
Для зберігання елементів стеку резервується масив S[1..n] певного розміру та додаткова змінна top[S], яка буде зберігати індекс верхівки стеку.
Операції push та pop тоді можуть бути записані так (без перевірки на переповнення та "незаповнення"):
PUSH (S, x) 1 top[S]:= top[S]+1 //збільшення індексу на 1 2 S[top[S]]:=x //запис нового елемента у верхівку стека
POP (S) 1 top[S]:=top[S]-1 // зменшення індексу на 1 2 return S[top[S]+1] //повернення колишньої верхівки стеку
21. Флаг переноса CF (англ. Carry flag) — в электронных арифметических устройствах — специальный флаг, устанавливаемый в результате арифметического переноса или сдвига со старшего значащего бита. Для арифметической операции может рассматриваться как флаг переполнения.
На языке ассемблера для 8086-процессоров обозначается как «CF».
Пример использования для восьмибитной архитектуры:
(флаг
не установлен)
(флаг
установлен)
Таким образом, при операции арифметического сложения флаг можно рассматривать как девятый бит результата.
В процессорах 8086 флаг «CF» также используется для отображения операции сравнения и индикации результата умножения (совместно с флагом переполнения «OF»).