Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на билеты.docx
Скачиваний:
37
Добавлен:
11.09.2019
Размер:
1.29 Mб
Скачать

4) Дифракционная решетка.

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность.

  • Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отраженном свете

  • Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (N), приходящихся на 1 мм решётки, то период решётки находят по формуле: d = 1 / N мм.

Условия главных дифракционных максимумов, наблюдаемых под определенными углами, имеют вид:

где d — период решётки, α — угол максимума данного цвета, k — порядок максимума,

λ — длина волны.

Описание явления: Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.

5) Дифракционные спектры и спектрографы.

Дифракционный спектр получается при прохождении света сквозь большое число малых отверстий и щелей, т.е. сквозь дифракционные решетки или при отражении от них.

В дифракционном спектре отклонение лучей строго пропорционально длине волны, так что ультрафиолетовые и фиолетовые лучи, как обладающие наиболее короткими волнами, отклонены наименее, а красные и инфракрасные, как обладающие наиболее длинными волнами, отклонены наиболее. Дифракционный спектр наиболее растянут в сторону красных лучей.

Спектрограф - это спектральный прибор, в котором приёмник излучения регистрирует практически одновременно весь спектр, развёрнутый в фокальной плоскости оптической системы. В качестве приёмников излучения в спектрографе служат фотографические материалы, многоэлементные фотоприёмники.

Спектрограф имеет три основные части: коллиматор, состоящий из объектива с фокусным расстоянием f1 и щели , установленной в фокусе объектива; диспергирующую систему , состоящую из одной или нескольких преломляющих призм; и камеру, состоящую из объектива с фокусным расстоянием f2 и фотопластинки, расположенной в фокальной плоскости объектива.

6) Дифракция рентгеновских лучей в кристаллах.

Дифракция рентгеновских лучей, рассеяние рентгеновских лучей кристаллами (или молекулами жидкостей и газов), при котором из начального пучка лучей возникают вторичные отклонённые пучки той же длины волны, появившиеся в результате взаимодействия первичных рентгеновских лучей с электронами вещества; направление и интенсивность вторичных пучков зависят от строения рассеивающего объекта. Дифрагированные пучки составляют часть всего рассеянного веществом рентгеновского излучения.

Кристалл является естественной трёхмерной дифракционной решёткой для рентгеновских лучей, т.к. расстояние между рассеивающими центрами (атомами) в кристалле одного порядка с длиной волны рентгеновских лучей (~1Å=10-8 см). Дифракцию рентгеновских лучей на кристаллах можно рассматривать как избирательное отражение рентгеновских лучей от систем атомных плоскостей кристаллической решётки. Направление дифракционных максимумов удовлетворяет одновременно трём условиям:

  a (cos a — cos a0) = Нl,

  b (cos b — cos b0) = Kl,

  с (cos g — cos g0) = Ll.

Здесь а, b, с — периоды кристаллической решётки по трём её осям; a0, b0, g0 — углы, образуемые падающим, а a, b, g — рассеянным лучами с осями кристалла; l — длина волны рентгеновских лучей, Н, К, L — целые числа. Эти уравнения называются уравнениями Лауэ. Дифракционную картину получают либо от неподвижного кристалла с помощью рентгеновского излучения со сплошным спектром, либо от вращающегося или колеблющегося кристалла (углы a0, b0 меняются, а g0 остаётся постоянным), освещаемого монохроматическим рентгеновским излучением (l — постоянно), либо от поликристалла, освещаемого монохроматическим излучением.