Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
40 тем к Интернет экзамену с пояснениями.doc
Скачиваний:
6
Добавлен:
07.09.2019
Размер:
742.91 Кб
Скачать
  1. Деформированное состояние в точке. Связь между деформациями и напряжениями

Совокупность линейных и угловых деформаций, возникающих по различным осям и в различных плоскостях, проходящих через данную точку тела, называют деформированным состоянием в точке.

Компоненты тензора деформаций в произвольных осях , представленные в виде функций координат , определяют деформированное состояние в точке.

Три взаимно перпендикулярные оси, в системе которых отсутствуют угловые деформации, называют главными осями деформированного состояния.

Зависимость между компонентами напряженного и деформированного состояния в пределах малых упругих деформаций носит название обобщенного закона Гука

Главные (линейные) деформации связаны с главными напряжениями зависимостями:

; ; .

Относительное изменение объема равно

.

Удельная потенциальная энергия деформации изменения формы определяется выражением

.

  1. Напряженное состояние в точке. Главные площадки и главные напряжения

Совокупность напряжений, возникающих на множестве площадок, проходящих через рассматриваемую точку, называют напряженным состоянием в точке.

Площадки в исследуемой точке напряженного тела, на которых касательные напряжения равны нулю, называют главными площадками.

В растянутом стержне главные площадки совпадают с поперечным и продольными сечениями.

Значения главных напряжений определяют из решения кубического уравнения . Инварианты напряженного состояния определены в п. 13.

При чистом сдвиге (кручении) главные напряжения равны .

Тензор напряжений – это совокупность нормальных и касательных компонентов напряжений на трех взаимно-перпендикулярных элементарных плоскостях, проходящих через точку тела.

Максимальные касательные напряжения в точке действуют в плоскости главных напряжений и в площадке, равно наклоненной к ним (по биссектрисе угла между ними) и равны .

Угол наклона главной площадки к оси X при плоском напряженном состоянии определяется формулой (плоскость, перпендикулярная оси z, свободна от напряжений).

ДЕ №5

  1. Статические моменты. Центр тяжести плоской фигуры

Статические моменты площади фигуры относительно оси x, y определяется интегралами: 

, .

Упрощенное вычисление – произведение площади сечения на расстояние от оси до центра тяжести сечения. Для сложной фигуры – сумма соответствующих произведений составляющих фигур.

Ось, относительно которой статический момент площади сечения равен нулю, называется центральной. Центральные оси пересекаются в центре тяжести сечения. Общий подход к определению расстояния от центра тяжести сечения до оси:

, .

Центр тяжести треугольника лежит на пересечении медиан, т.у. отстоит от основания на 1/3 высоты.

Центр тяжести полуокружности отстоит от диаметра на .

  1. Осевые момента инерции. Зависимость между моментами инерции при параллельном переносе осей

Осевые моменты инерции площади фигуры относительно оси x, y определяется интегралами: 

, .

Для простых сечений:

Прямоугольник высотой и основанием - относительно центральных осей , ;

- относительно сторон , ;

Равнобедренный треугольник высотой и основанием - относительно центральных осей

, ;

- относительно основания ;

Окружность диаметром d - относительно центральной оси ,

Полуокружность диаметром d относительно центральных осей , .

Для сложной фигуры из k простых , где - расстояние от центра тяжести i-ой фигуры до оси.