Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая КТНО.docx
Скачиваний:
5
Добавлен:
03.09.2019
Размер:
114.48 Кб
Скачать

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости Электронные полупроводники (n-типа)

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Приложение ж

Лекция 2. «Полупроводниковые диоды»

Полупроводниковый диод [2] — прибор, обладающий способностью хорошо пропускать через себя электрический ток одного направления и плохо — ток противоположного направления. Это свойство диода используют, например, в выпрямителях для преобразования переменного тока в постоянный.

Слово «диод» образовалось от греческой приставки «ди»—«дважды» и сокращения слова «электрод».

Полупроводниковый диод представляет (слайд 3) собой полупроводниковую пластинку с двумя областями разной проводимости: электронной (n-типа) и дырочной (р-типа). Между ними — разделяющая граница, называемая р-n переходом.

Область n-типа называют отрицательным электродом, а область р-типа — положительным электродом полупроводникового диода. Диод хорошо пропускает ток, когда его отрицательный электрод соединен с отрицательным полюсом источника напряжения (батареи), а положительный с положительным полюсом, т. е. когда на диод подается напряжение прямой полярности, или, короче, прямое напряжение. В этом случае электроны в л-области полупроводниковой пластинки будут двигаться к положительному полюсу батареи, т. е. к границе с р-областью, в то же время «дырки» в р-области будут двигаться к отрицательному полюсу батареи и, следовательно, к границе с n-областью.. В результате вблизи р-n перехода произойдет накопление положительных и отрицательных зарядов, и поэтому сопротивление перехода уменьшится. При напряжении противоположной (обратной) полярности, когда положительный полюс батареи соединен с n-областью, а отрицательный с р-областью, электроны в n-области и «дырки» в р-области движутся от границы р-n перехода. Вследствие этого происходит уменьшение положительных и отрицательных зарядов вблизи р-n перехода, и его сопротивление увеличивается. Это и означает, что при переменном напряжении ток через диод в одном направлении будет большей силы, чем в другом, т. е. в нагрузке появится практически ток одного направления — произойдет выпрямление переменного тока.

Наряду с выпрямительными свойствами р-n переход обладает емкостью, зависящей от значения и полярности приложенного напряжения. При прямом напряжении емкость диода больше, чем при обратном.

Один из способов изготовления диода состоит в следующем. На пластинку полупроводника, например германия, обладающего электронной проводимостью, накладывают небольшой кусочек индия и помещают в печь. При высокой температуре (около 500° С) индий вплавляется в пластинку германия, образуя в ней область дырочной проводимости. К самой пластинке германия и к затвердевшей «капле» индия припаивают два проволочных вывода электродов и прибор заключают в герметический и непрозрачный корпус, чтобы защитить р-п переход от воздействия влажности и света.

Полупроводниковые диоды применяют для выпрямления переменного тока, для детектирования слабых сигналов, например, в радиоприемниках, для выделения и обработки сигналов в различных автоматических устройствах и электронных вычислительных машинах (ЭВМ).

 Основные характеристики и параметры диодов

  • вольт-амперная характеристика (слайд 4)

  • постоянный обратный ток диода

  • постоянное обратное напряжение диода

  • постоянный прямой ток диода

  • диапазон частот диода

  • дифференциальное сопротивление

  • ёмкость

  • пробивное напряжение

  • максимально допустимая мощность

  • максимально допустимый постоянный прямой ток диода