
- •4. Гіс та картографія
- •5. Функції гіс
- •Використання гіс в землеустрої та кадастр
- •7. Класифікація гіс
- •8. Введення даних в гіс
- •9 Апаратне забезпечення гіс
- •10. Відмінність гіс від інших інформаційних систем
- •11. Історія розвитку гіс
- •12. Види інформації в гіс. Пошарова (полементна) структура даних в гіс
- •13. Представлення даних в гіс
- •14. Векторні моделі представлення даних
- •15. Растрові моделі представлення даних
- •16. Порівняння векторних та растрових моделей даних
- •17.Основними характеристиками растрового зображення є:
- •18.Перетворення «растр-вектор» і «вектор-растр»
- •19.Оптимальний вибір моделі представлення даних для вирішення завдань землеустрою та кадастру
- •20. Поняття про топологію
- •21. Топологічні векторні структури (dime-структура)
- •22. Нетопологічні векторні структури ("спагетті")
- •23.Для чого використовується топологія
- •24. Етапи роботи із топологією
- •25. Основи топології для редагування даних
- •26. Правила топології
- •27. Ранги в топології
- •28. Кластерний допуск
- •31. Методи розрахунку цмр
- •32. Регулрна мережа висот grid
- •33. Нерегулярна мережа тріангуляції tin
- •34. Інформаційне забезпечення для створення цифрової моделі рельєфу
- •35. Побудова цифрової моделі рельєфу за даними дистанційного зондування
- •36. Побудова цифрової моделі рельєфу за матеріалами польових зйомок
- •37. Побудова цмр за топографічними даними
- •38.Методика побудови цмр в tnTmips
- •39. Електронні карти в порівняні з паперовими
- •40. Дані та інформація. Критерії оцінки інформації.
- •41. Наукова інформація. Види наукової інформації
- •42. Бази даних
- •43. Проектування баз даних
- •44. Моделі даних
- •45. Поняття про дистанційне зондування Землі
- •46. Схема технології дзз
- •47. Фізичні основи дзз
- •48. Видимий діапазон та його особливості щодо одержання інформації.
- •49. Інфрачервоний діапазон та його особливості щодо одержання інформації.
- •50. Радіодіапазон та його особливості щодо одержання інформації.
- •51.Види космычних зйомок
- •54. Дешифрирование данных дистанционного зондирования
- •55. Дешифрированные признаки
18.Перетворення «растр-вектор» і «вектор-растр»
Растрові і векторні структури даних мають свої переваги і недоліки. До переваг растрових структур слід віднести злиття позиційної і семантичної атрибутик просторової інформації в єдиній прямокутній матриці; при цьому відпадає необхідність в особливих засобах збереження й обробки семантики просторових даних (як у векторних структурах), що значно спрощує аналітичні операції з растровими зображеннями, зокрема, оверлейний аналіз. Основними недоліками растрового подання є значна ємність машинної пам'яті, необхідна для збереження растрових даних; висока вартість сканерів, що забезпечують автоматизоване введення інформації; а також недостатньо висока точність позиціонування точкових об'єктів і зображення ліній (особливо похилих), зумовлена генералізацією інформації в межах комірки растра.
Основними перевагами векторного подання є компактність збереження (часто в десятки разів вища, ніж при растровому), висока точність позиціонування точкових об'єктів і зображення ліній. Однак векторні моделі мають складну систему опису топологічної структури даних, унаслідок чого їх обробка вимагає виконання складних геометричних алгоритмів визначення положеннявузлових точок, стикування сегментів (дуг), замикання полігонів та ін. Це значно сповільнює маніпулювання векторними даними, особливо на персональних комп'ютерах з порівняно невеликою швидкодією.
Порівняння переваг і недоліків двох основних структур просторових даних показує, що вони взаємно протилежні один одному — переваги одного способу формалізації є недоліками іншого, і навпаки. Це визначає необхідність застосування в рамках ГІС обох способів і, отже, наявності можливості перетворення (конвертації) однієї структури в іншу, і навпаки (виконання так званих вектор-растрових і растр-векторних перетворень), що в наш час реалізовано у всіх досить потужних ГІС-пакетах. При цьому розв'язання різних завдань доцільно виконувати з використанням того способу формалізації просторових даних, який у даному випадку більш ефективний. Ідея вектор-растрового перетворення досить проста: точка заміняється коміркою, лінія — послідовністю комірок, територіальний об'єкт (полігон) — сукупністю комірок із заданим розміром. При цьому укладається угода, наприклад, про те, що при перетворенні ліній у растр значущими стають всі комірки, через які проходить лінія, а при перетворенні полігонів — тільки ті з них, у яких межею полігона відтинається значна частина комірки Принцип конвертації растрових структур просторових даних у векторні також очевидний: зміст кожної комірки зводиться до точки, положення якої відповідає, наприклад, геометричному центру цієї комірки. Однак на практиці реалізація цього принципу ускладнюється «розмитістю» лінійних об'єктів і меж територіальних, наявністю «шумів», особливо при векторизації даних дистанційного зондування або растрових зображень, отриманих шляхом сканерного введення. У цьому випадку необхідне проведення попередньої обробки растрових зображень з метою «придушення» шумів, «стоншення» лінійних об'єктів і меж територіальних, «скелетизації» зображення.
Слід зазначити також, що існують пропозиції щодо комбінованих растр-векторних подань просторових даних, які поєднують вигоди растрового і векторного подань і не потребують вектор-растрового чи растр-векторного перетворення. До таких комбінованих моделей просторових даних відносять матрично-символьні структури, що є узагальненням квадротомічних структур даних, і растрове представлення, основною логічною одиницею якого є система, яка поєднує кілька рядків сканування і містить елементи векторного і растрового подань.
Векторним способом подання просторових даних, або векторною моделлю, називають спосіб формалізації просторових даних, що ґрунтується на використанні набору елементарних графічних об'єктів, або «графічних примітивів».
В основу векторної моделі покладено точку (point) — первинний графічний елемент із координатами (х, у), місце розташування якого відоме з довільно заданою точністю. Дві точки з координатами (х1, у1) і (х2, у2) формують другий графічний примітив, лінію (line) — відрізок прямої, що з'єднує ці точки. Замкнута послідовність ліній відокремлює частину поверхні — полігон (polygon), який є третім з основних елементарних графічних об'єктів, або графічних примітивів, на яких базується векторна модель просторових даних.