Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Запитання для перевірки знань до спецкурсу.docx
Скачиваний:
4
Добавлен:
31.08.2019
Размер:
1.35 Mб
Скачать
  1. Дія паратгормону на кісткову тканину, нирки та кишечник. Механізм дії паратгормону.

Паратгормон взаимодействует с плазматическими рецепторами, которые являются гликопротеинами с молекулярной массой около 800 кДа и состоят из 585-594 аминокислотных остатков (A.B. Abou-Samra и соавт., 1992). Рецептор паратгормона, как и все другие рецепторы, относящиеся к семейству рецепторов, оперирующих через G-белок, имеет 3 цепи внеклеточного фрагмента, 7 трансмембранных фрагментов и внутриклеточую часть рецептора, также представленную 3 петлями полипептидной цепочки. Такое взаимодействие приводит к активации аденилатциклазы и повышению цАМФ, что сопровождается увеличением содержания этого соединения как в крови, так и в моче. Помимо цАМФ, в механизме действия паратгормона участвуют йонизированный кальций цитозоля, а также инозитолтрифосфат и диацилглицерин. В некоторых тканях указанные вещества участвуют в качестве внутриклеточных модуляторов, в других опосредуют действие паратгормона независимо от цАМФ.

Основная функция паратгомона заключается в поддержании постоянного уровня ионизированного кальция в крови и эту функцию он выполняет, влияя на кости, почки и посредством витамина D – на кишечник. Как известно, в организме человека содержится около 1 кг кальция, 99% которого локализуется в костях в форме гидроксиапатита. Около 1% кальция организма содержится в мягких тканях и во внеклеточном пространстве, где он принимает участие во всех биохимических процессах.

Метаболизм и деградация паратгормона осуществляется в основном в печени (около 62-70%), а также в почках (30-38%). В купферовских клетках печени под влиянием протеаз происходит разрыв полипептидной цепи гормона между аминокислотными остатками в положении 33-34, 36-37, 40-41 и 42-43 с образованием С-фрагментов с мол.м. 4000-7000 Д (или 4-7 кДа).

Наряду с этим паратгормон оказывает влияние на обмен фосфора и магния. В организме содержится около 600 г фосфора (85% в скелете и 15 % в мягких тканях и во внеклеточной жидкости), тогда как магния лишь 25 г (65% в скелете и 35% в мягких тканях). Обмен кальция, фосфора и магния в организме показан на схеме 24.

Ежедневное потребление кальция с пищей составляет около 1 г. Кальций всасывается в верхнем отделе тонкого кишечника. Это активный процесс, осуществляемый транспортным кальцийсвязывающим белком, который активизируется 1,25-дигидроксивитамином D. Всасывание кальция в кишечнике усиливается при увеличении поступления кислот с пищей, диете с высоким содержанием белка, саркоидозе, беременности, тогда как щелочи, глюкокортикоиды, избыток фосфатов и оксалатов снижают его всасывание в кишечнике.

Значение кальция в организме велико. Концентрация кальция во внеклеточной жидкости 10-3 М и составляет около 70% от уровня его в плазме крови, тогда как в цитозоле концентрации кальциия в тысячу раз меньше – 10-6 М; 90-99% внутриклеточного кальция локализуется в митохондриях и микросомах, где он находится в связанной форме с органическими и неорганическими фосфатами. В цитоплазме кальций связан кальмодулином. Ионы кальция (ионизированный кальций) необходимы для осуществления внутриклеточных процессов (сокращение скелетных и сердечной мышц, внутриклеточная секреция, как эндо-, так и экзокринная, передача нервного возбуждения, регуляция транспорта различных ионов через мембрану клетки, регуляции гликогенолиза и глюконеогенеза и др.). Кроме того, кальций принимает участие в поддержании стабильности клеточных мембран, активирует факторы свертывания крови VII, IХ и Х; в костной ткани обеспечивает процессы минерализации.

Содержание кальция в сыворотке крови составляет 2,25-2,55 ммоль/л (9-10 мг/100 мл), а ионизированного – 1,2 ммоль/л (4,8 мг/100 мл). В плазме кальций связывается белками крови, в основом альбуминами. Снижение кальция в сыворотке крови ниже 2 ммоль/л (8 мг/100 мл) приводит к стимуляции высвобождения паратгормона.

Концентрация неорганического фосфора в крови составляет 1,13 ммоль/л (3,5 мг/100 мл), а его ионизированной фракции – 0,61 ммоль/л (1,9 мг/100 мл). Около 2/3 фосфора плазмы представляют его органические соединения, в основном фосфолипиды.

Содержание магния в сыворотке крови составляет 0,99 ммоль/л (2,4 мг/100 мл), а его ионизированной функции – 0,53 ммоль/л (1,3 мг/100 мл).

Действие паратгормона на кости. Кость, как известно, состоит из белкового каркаса – матрикса и минералов. Постоянный обмен веществ и структура костной ткани обеспечиваются согласованным действием остеобластов и остеокластов. Остеокласты – большие многоядерные клетки – участвуют в процессах резорбции, т.е. рассасывания костной ткани; действуют только на минерализованную кость и не изменяют матрикс кости. Остеобласты – клетки, участвующие в новообразовании костной ткани и процессах ее минерализации. Эти клетки, содержащие выраженную эндоплазматическую сеть и пластинчатый комплекс или комплекс Гольджи. Остеобласты, как и одонтобласты, секретируют специфический белок – остеокальцин, который является уникальным маркером метаболизма костной ткани. Остеокальцин состоит из 49 аминокислот. Ген, кодирующий синтез остеокальцина, локализуется на 1-й хромосоме и регулируется 1,25(ОН)2D3, эстрогенами, глюкокортикоидами и другими биологически активными соединениями. Исследованиями последних лет показано, что рецепторы костной ткани к паратгормону, а вернее к его аминотерминальному фрагменту, подобны тем, которые выявлены в почках и кДНК клонированного рецептора этих двух тканей (E. Schipani и соавт., 1993). Влияние паратгормона на резорбцию костной ткани на пострецепторном уровне осуществляется в основном через инозитолтрифосфат и диацилглицерин, но не через цАМФ, которые образуются посредством активации фосфолипазы С и ионов Са. Тканью-мишенью для паратгормона в костях являются в основном неполовозрелые остеобласты – преостеобласты (менее дифференцированные клетки по сравнению с остеобластами). Влияние паратгормона на костную ткань зависит от СТГ и ИФР I. Пермиссивную роль при этом играют глюкокортикоиды, эстрогены, эпидермальный фактор роста, фактор некроза опухолей, факторы роста тромбоцитов и др. Помимо остеобластов, рецепторы к паратгормону выявлены также на преостеокластах и остеокластах. Комплексирование паратгормона с рецепторами остеокластов не сопровождается повышением уровня цАМФ и в связи с этим считается, что эффект паратгормона в этих клетках опосредуется другими медиаторами. Имеется также предположение, что первичным является взаимодействие паратгормона с остеобластами и результат такого взаимодействия триггирует в свою очередь остеокласты (вторичный эффект паратгормона).

Действие паратгормона на кость характеризуется двумя фазами: ранней, в период которой происходит увеличение метаболической активности остеокластов и проявляющейся мобилизацией кальция из костей с восстановлением его уровня во внеклеточной жидкости, и поздней, характеризующейся синтезом белка и длящейся в течение 24 ч после применения паратгормона, когда наряду с резорбцией кости наблюдаются процессы образования новых ее клеток, сочетающиеся с повышенным синтезом лизосомальных и других ферментов (коллагеназа, лизосомальные гидроксилазы, катепсин В, цистеиновые протеазы, кислая фосфатаза и дрю), участвующих в процессах резорбции кости. Поздняя фаза унетается ингибиторами белкового синтеза.

Механизм действия паратгормона на костную ткань осуществляется через цАМФ, активирование цАМФ-зависимых протеинкиназ, фосфолипазы С, диацилглицерина, инозитолтрифосфата и ионов Са. Гиперкальциемия, индуцируемая паратгормоном, является результататом проявления ранней и поздней фазы действия. При длительной гиперсекреции паратгормона наблюдается не только деминерализация костной ткани, но и деструкция матрикса, что сопровождается повышением гидроксипролина в плазме крови и экскреции его с мочой. Активированные остеокласты синтезируют повышенное количество коллагеназы и других ферментов, участвующих в деструкции матрикса, например, кислой фосфатазы, углеродной ангидразы, Н+, К+-аденозинтрифосфатазы и др. Паратгормон стимулмрует углеродную ангидразу II типа, специфический фермент, генерирующий атом водорода, участвующий в функции Н+, К+-АТФазного протоновоого насоса.

Взаимодействие паратгормона осуществляется с рецепторами, расположенными на мембране не только остеокластов, но и остеобластов, где также отмечается повышение цАМФ и вхождения кальция в цитоплазму. Это сопровождается повышением щелочной фосфатазы, образованием новой костной ткани и увеличением минерализации кости.

Кроме паратгормона, на процессы хондрогенеза и оссификации костной ткани и, в частности, на процессы ремоделирования костной ткани, оказывает большое влияние и паратгормонподобный белок, который осуществляет эти влияния через специфические рецепторы. Показано, что паратгормонподобный пептид содержит карбокситерминальный фрагмент, обладающий активностью, которая угнетает резорбцию костной ткани остеокластами. По данным A.J Fenton и соавт. (1991), такая активность связана с карбокситерминальным фрагментом молекулы (аминокислотные остатки 107-139 или 107-111). Однако это разделяют не все авторы (T. Sone и соавт., 1992).

Действие паратгормона на почки. Паратгормон, с одной стороны, угнетает реабсорбцию фосфатов, в меньшей степени натрия и бикарбонатов в проксимальных канальцах почек, что ведет к фосфатурии и гипофосфатемии, с другой – увеличивает реабсорбцию кальция в дистальных отделах канальцев, т.е. уменьшает экскрецию кальция. Однако при длительной гиперсекреции паратгормона (аденома околощитовидных желез) развивается такая значительная гиперкальциемия, которая, несмотря на повышение реабсорбции кальция, приводит к гиперкальцийурии. Паратгормон снижает реабсорбцию бикарбонатов. Действие паратгормона на почки показано на схеме 25.

Рецепторы к паратгормону выявлены на подоцитах клубочка, в проксимальных и дистальных канальцах, а также восходящей части петли Генле. На молекулярном уровне паратгормон основное действие на почки осуществляет через образование цАМФ. Однако, помимо цАМФ, вторичными мессенджерами паратгормона в почках являются диацилглицерин, ионы кальция и инозитолтрифосфат. Последний в настоящее время рассматривается как основной медиатор высвобождения кальция из цитозольного, немитохондриального пула. Этот эффект наблюдается уже через несколько секунд после взаимодействия инозитолтрифосфата с соответствующими рецепторами. Помимо этого, инозитолтрифосфат открывает мембранные каналы, что увеличивает поступление внеклеточного кальция в клетку. Именно этим действием объясняется транзиторный гипокальциемический эффект в ответ на введение паратгормона

Свое влияние паратгормон на натрий-фосфатный котранспорт оказывает путем повышения образования цАМФ и путем активизации фосфолипазы С и образования диацилглицерина и инозитолтрифосфата. Не исключено, что в физиологических условиях влияние паратгормона на ингибирование транспорта фосфатов в канальцах почек осуществляется преимущественно через систему активирования фосфолипазы С.

Кроме того, паратгормон повышает активность 1-гидроксилазы в почках, которая контролирует конверсию 25-гидроксивитамина D в 1,25-дигидроксивитамин D, ответственный за повышение реабсорбции кальция в кишечнике, посредством активизации специфического кальцийсвязывающего белка. Механизм действия 1,25-дигидроксивитамина D подобен действию стероидных гормонов.

После взаимодействия 1,25-дигидроксивитамина D с цитозольными рецепторами клеток слизистой оболочки тонкого кишечника происходит экспрессия гена, ответственного за синтез кальцийсвязывающего белка, получившего название кальбиндина. Кальбиндины представлены в большом количестве в проксимальном отделе кишечника (кальбиндин D, имеющий мол.м. 9 кДа) и в почках (кальбиндин D с мол.м. 28 кДа). Кальбиндин D9k имеет 2 высокоаффинных Са-связывающих участка, а кальбиндин D28 кДа – 4 высокоаффинных Са-связывающих мест. Считается, что эти белки ответственны за транспорт кальция через мембрану клеток кишечника и почек соответственно. H.J. Armbrecht и соавт. (1989) показали, что кальбиндины по многим показателям отличаются от кальмодулина (белок цитозоля, также связывающий ионы кальция) и экспрессия мРНК в соответствующих тканях снижается с возрастом. Это, по мнению авторов, может иметь определенное значение в уменьшении транспорта кальция в почках и кишечнике, которое наблюдается с увеличением возраста.

  1. Кальцитонін. Механізм дії кальцитоніну.

    1. Кальцитріол. Біосинтез, регуляція синтезу та метаболізм кальцитріолу. Роль в метаболізмі кальцію.

Кальцитриол - единственный гормон, способствующий транспорту кальция против концентрационного градиента, существующего на мембране клеток кишечника. Поскольку продукция кальцитриола очень строго регулируется ( рис. бх 47-4 ), очевидно, что существует тонкий механизм, поддерживающий уровень кальция во внеклеточной жидкости, несмотря на значительные колебания в содержании кальция в пище. Этот механизм ( рис. 16-7сер ) поддерживает такие концентрации кальция и фосфата, которые необходимы для образования кристаллов гидроксиапатитов , откладывающихся в коллагеновых фибриллах кости . При недостаточности витамина D (кальцитриола) замедляется формирование новых костей и нарушается обновление (ремоделирование) костной ткани. В регуляции этих процессов участвует в первую очередь ПТГ , воздействующий на клетки кости , но при этом необходим и кальцитриол в небольших концентрациях. Кальцитриол способен также усиливать действие ПТГ на реабсорбцию кальция в почках.

МЕХАНИЗМ ДЕЙСТВИЯ.

Кальцитриол имеет свойсва гормона. Кальцитриол - это во всех отношениях гормон. Он образуется в сложной последовательности ферментативных реакций, которая включает перенос кровью молекул-предшественников, поступающих в различные ткани.

Далее кальцитриол транспортируется в другие органы, где активирует определенные биологические процессы по механизму, сходному с механизмом действия стероидных гормонов. Схему биосинтеза кальцитриола см рис. 47-4бх

Витамин D (Кальцитриол): места накопления. Действие кальцитриола на клеточном уровне аналогично действию других стероидных гормонов ( рис. 1-8сер ). В исследованиях, проведенных с радиоактивным кальцитриолом, было показано, что он накапливается в ядре клеток кишечных ворсинок и крипт, а также остеобластов и клеток дистальных почечных канальцев . Кроме того, он был обнаружен в ядре клеток, в отношении которых и не предполагалось, что они являются клетками-мишенями кальцитриола; речь идет о клетках мальпигиевого слоя кожи и , семенников , плаценты , матки , грудных желез , тимус а, клетках-предшественниках миелоидного ряда . Связывание кальцитриола было обнаружено и в клетках паращитовидных желез , что крайне интересно, так как указывает на возможное участие кальцитриола в регуляции обмена ПТГ .

Рецептор кальцитриола. Аминокислотная последовательность рецептора 1,25(OH)2D3 расшифрована. Этот цитоплазматический рецептор с молекулярной массой 50000 включает С-концевой гормонсвязывающий домен (обладающий высоким сродством и стереоспецифичностью к 1,25(OH)2D3) и богатый цистеином ДНК-связывающий домен, содержащий атомы цинка. Присутствующий в клетках кишечника рецептор связывает кальцитриол с высокой степенью сродства и малой емкостью. Связывание насыщаемо, специфично и обратимо. Таким образом этот белок отвечает основным критериям, характеризующим рецептор; он обнаружен во многих из тканей, где происходит накопление витамина D (см. Витамин D Кальцитриол :места накопления) . Если при анализе используют физиологические концентрации солей, то большая часть незанятого рецептора выявляется в ядре в связанном с хроматином виде. Это аналогично локализации рецепторов если не всех стероидных гормонов, то во всяком случае прогестерона и Т3 . Остается не ясным, требуется ли для связывания с хроматином предварительная активация комплекса кальцитриол-рецептор , как это имеет место с типичными стероид-рецепторными комплексами .

Кальцитриол-зависимые генные продукты. Как известно уже на протяжении ряда лет, изменение процесса транспорта в кишечных клетках в ответ на добавление кальцитриола требует участия РНК и синтеза белка. Исследования показавшие связывание в ядре рецепторов кальцитриола с хроматином , позволили предположить, что кальцитриол стимулирует транскрипцию генов и образование специфических мРНК. Действительно, удалось выявить один такой пример, а именно индукцию мРНК, кодирующей кальций-связывающий белок ( КСБ ).

Существует несколько цитозольных белков, связывающих кальций с высокой степенью сродства. Часть из них принадлежит к группе кальцитриол-зависимых. В группу входит несколько белков, различающихся по молекулярной массе, антигенности и тканевому происхождению ( кишки , кожа , кость ). Из этих белков лучше всего изучен КСБ клеток кишечника. У D-авитаминозных крыс КСБ в таких клетках практически отсутствует; в целом концентрация КСБ в высокой степени коррелирует с количеством кальцитриола ядерной локализации.

Витамин D (Кальцитриол): транспорт кальция и фосфата из кишечника. При переносе ионов кальция и фосфата через слизистую кишечника необходимы

1) захват и перенос через мембрану щеточной каемки и микроворсинок ,

2) транспорт через мембрану клеток слизистой ,

3) выведение через базальную латеральную мембрану во внеклеточную жидкость. Совершенно очевидно, что кальцитриол активирует один или более из этих этапов, но конкретный механизм его действия не установлен. Предполагалось, что непосредственное участие в этом принимает КСБ, но впоследствии было показано, что перенос кальция происходит через 1-2 часа после введения кальцитриола, т.е. задолго до увеличения концентрации КСБ в ответ на кальцитриол. Вероятно, КСБ, связывая кальций, защищает от него клетки слизистой в периоды активного транспорта этого иона. Некоторые исследователи продолжают поиски белков, могущих участвовать в транспорте кальция, тогда как другие считают, что этот процесс, в особенности начальное увеличение тока кальция, может быть опосредован изменением заряда мембраны. Обсуждается также роль метаболитов полифосфоинозитидов.

Витамин D (Кальцитриол): влияние на другие ткани. О действии кальцитриола на другие ткани известно мало. Ядерные рецепторы кальцитриола выявлены в клетках кости , причем показано, что убусловленное кальцитриолом увеличение концентрации кальция сопряжено с синтезом РНК и белка. Однако генные продукты, предположительно индуцируемые кальцитриолом, не идентифицированы; не известен также механизм связи между кальцитриолом и ПТГ в их действии на клетки кости.

Любопытное указание на роль кальцитриола в клеточной дифференцировке получено в исследованиях, продемонстрировавших, что этот гормон способствует превращению клеток промиелоцитарной лейкемии в макрофаги . Поскольку, как предполагают, остеокласты либо являются родственными макрофагам клетками, либо непосредственно происходят из них, вполне вероятно, что кальцитриол участвует в этом процессе, способствуя дифференцировке клеток кости .

Витамин D и Кальцитриол в тканях.

образование в коже. Небольшие количества витамина D содержатся в продуктах питания (жир, печень рыб, желток яйца), но большая часть витамина D, используемого в синтезе кальцитриола, образуется в мальпигиевом слое эпидермиса кожи из 7-дегидрохолестерола в ходе неферментативной, зависимой от ультрафиолетового света , реакции фотолиза. Активность процесса находится в прямой зависимости от интенсивности облучения и в обратной - от степени пигментации кожи. С возрастом содержание 7-дегидрохолестерола в эпидермисе снижается, что может иметь прямое отношение к развитию отрицательного баланса кальция у стариков .

печень. Специфический транспортный белок, называемый D-связывающим белком , связывает витамин D3 и его метаболиты и переносит D3 от кожи или кишечника в печень , где он подвергается 25- гидроксилированию, составляющему первый обязательный этап в образовании кальцитриола ( рис 47-4бх ). 25-Гидроксилирование происходит в эндоплозматическом ретикулуме в ходе реакции, протекающей с участием магния, NADPH, молекулярного кислорода и неидентифицированного цитоплазматического фактора. В реакции участвуют два фермента: NADPH-зависимая цитохром P-450-редуктаза и цитохром P-450 . Реакция не регулируется; она протекает не только в печени, но (с малой интенсивностью) также в почках и кишках . Продукт реакции 25-OH-D3 поступает в плазму крови (составляя основную форму витамина D , присутствующего в крови) и при посредстве D-связывающего белка транспортируется в почки .

образование кальцитриола в почках. 25-OH-D3 является слабым агонистом; для проявления полной биологической активности это соединение должно быть модифицировано путем гидроксилирования при C-1. Это происходит в митохондриях проксимальных извитых почечных канальцев в ходе сложной монооксигеназной реакции, протекающей при участии NADPH , катиона магния , молекулярного кислорода и по крайней мере трех ферментов: 1) почечной ферредоксин-редуктазы (флавопротеин), 2) почечного ферредоксина (железосодержащий сульфопротеин) и 3) цитохрома P-450 . В этой системе образуется 25-(OH)2-D3 - самый активный из природных метаболитов витамина D .

образование в других тканях. В плаценте содержится 1альфа-гидроксилаза , которая, по- видимому, играет важную роль как источник внепочечного кальцитриола . Активность этого фермента выявляется и в других тканях, включая костную, однако физиологическое значение фермента этих тканей минимально, судя по тому, что у небеременных животных после нефроэктомии уровень кальцитриола очень низок.

Витамин D: распределение метаболитов витамина в организме

Рецепторы 1,25(ОН)2D3, 25(ОН)D3 и 24,25(ОН)2D3 обнаружены не только в тонкой кишке и костях , но и в почках , поджелудочной железе , скелетных мышцах , гладких мышцах сосудов , клетках костного мозга , лимфоцитах . По-видимому, роль метаболитов витамина D не ограничивается регуляцией уровня кальция во внеклеточной жидкости.

Витамин D и Кальцитриол: метаболизм и синтез.

Под действием УФ-В в эпидермисе происходит синтез превитамина D3 из провитамина D3 ( 7-дегидрохолестерина ). В дальнейшем превитамин D3 путем термической изомеризации превращается в холекальциферол ( витамин D3 ) и попадает в сосуды дермы , а оттуда - в системный кровоток. Превращение холекальциферола в гормональноактивную форму - 1,25-дигидроксивитамин D3 ( 1,25(OH)2D3 ) - происходит в печени .

Метаболиты витамина D регулируют дифференцировку кератиноцитов . В пожилом возрасте способность кожи синтезировать холекальциферол снижается, что в сочетании с постоянным использованием солнцезащитных средств может привести к авитаминозу D . Как показал ряд исследований, солнцезащитные средства действительно препятствуют синтезу холекальциферола в коже человека.

Подобно другим стероидным гормонам , кальцитриол является объектом жесткой регуляции по механизму обратной связи ( рис. 47-4бх и табл. Регуляция почечной 1альфа-гидроксилазы ). Время полураспада кальцитриола в крови около 5 часов.

У интактных животных низкое содержание кальция в пище и гипокальциемия вызывают значительное повышение 1альфа-гидроксилазной активности. В механизме этого эффекта участвует ПТГ , который также высвобождается в ответ на гипокальциемию. Роль ПТГ при этом пока не ясна, но установлено, что он стимулирует 1альфа-гидроксилазную активность как у D- авитаминозных животных, так и у животных получавших витамин D . Недостаток фосфора в диете и гипофосфатемия тоже индуцируют 1альфа-гидроксилазную активность, но служат, по-видимому, более слабым стимулом, чем гипокальциемия.

Кальцитриол - важный регулятор своего собственного продуцирования. Повышение уровня кальцитриола тормозит работу 1альфа-гидроксилазы почек и активирует синтез 24-гидроксилазы , что ведет к образованию побочного продукта - 24,25-(OH)2-D3, лишенного, по видимому, биологической активности.

Эстрогены , прогестероны и андрогены значительно увеличивают количество 1альфа-гидроксилазы у овулирующих (несущихся) птиц. Какую роль в синтезе кальцитриола играют эти гормоны (наряду с инсулином , гормоном роста и пролактином ) у млекопитающих, остается неясным.

Стерольная структура, составляющая основу кальцитриола, может подвергаться модификациям в альтернативных метаболических последовательностях, а именно гидроксилироваться по положениям 1, 23, 24 и 26 с образованием различных лактонов. Было обнаружено свыше 20 метаболитов, но ни для одного из них не удалось однозначно доказать наличие биологической активности.

Кальцитриол: регуляция синтеза. Скорость образования 1,25(ОН)2D3 зависит от количества и состава пищи и от сывороточной концентрации кальция , фосфата , ПТГ и, возможно, других гормонов - кальцитонина , эстрогенов, СТГ , инсулина . ПТГ непосредственно стимулирует синтез 1,25(ОН)2D3, активируя 1aльфа-гидроксилазу . Синтез 1,25(ОН)2D3 усиливается при снижении внутри- и внеклеточной концентрации кальция и фосфора. Изменения концентрации кальция и фосфора влияют на синтез 1,25(ОН)2D3 опосредованно, через ПТГ: при гипокальциемии и гипофосфатемии секреция ПТГ усиливается, при гиперкальциемии и гиперфосфатемии - подавляется. Паратиреоидный гормон: влияние на почки

Кальцитриол: физиологическая роль. Как и ПТГ , 1,25(ОН)2D3 регулирует перестройку костной ткани . 1,25(ОН)2D3 - это главный стимулятор всасывания кальция в кишечнике . Благодаря действию 1,25(ОН)2D3 концентрация Са2+ во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани. При дефиците 1,25(ОН)2D3 нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатита в органическом матриксе, что приводит к рахиту или остеомаляции .

Было установлено, что 1,25(ОН)2D3 усиливает резорбцию костной ткани . В опытах на культурах клеток паращитовидных желез показали, что 1,25(ОН)2D3 подавляет секрецию ПТГ .

Роль 24,25(ОН)2D3 окончательно не выяснена. Считается, что образование 24,25(ОН)2D3 - это главный способ катаболизма и экскреции производных витамина D , из-за того, что 24,25(ОН)2D3 превращается в водорастворимую кальцитроевую кислоту . Вероятно также, что при нарушении синтеза 1,25(ОН)2D3 (т. е. при нарушении 1-гидроксилирования ) происходит переключение метаболизма 25(ОН)D3 : он превращается преимущественно в 24,25(ОН)2D3, а не в 1,25(ОН)2D3. Кроме того, показано, что 24,25(ОН)2D3 участвует в перестройке кости.