
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
4. Розв’язати рівняння
Практична робота 17
Дії над ймовірностями.
1. На кожній із шести однакових карток надруковано одну з літер Е, Н, А, І, Т, Г. Картки витягують навмання послідовно і складають зліва направо. Яка ймовірність того, що в результаті вийде слово «НАТІГ»?
2. На складі є 10 кінескопів заводу № 1 і вісім кінескопів заводу № 2. Навмання взято чотири кінескопи. Знайти ймовірність того, що серед них два кінескопи заводу № 1 і два кінескопи заводу № 2.
3. Цифри 1, 2, 3, 4, 5, 6, 7 написано на однакових картках, які ретельно перемішано. Тричі навмання беруть по одній картці і кладуть їх зліва направо. Знайти ймовірність того, що утворене тризначне число виявиться: а) парним; б) кратним трьом; в) кратним 5.
4. Банк протягом місяця мав видати в кредит позику дванадцяти клієнтам першого району і десяти клієнтам другого району. Ця операція здійснюється поетапно. Знайти ймовірність того, що за перший тиждень кредити отримають два клієнти першого району і чотирі клієнти другого, якщо всі клієнти мають однакові можливості отримати позику.
5. У цеху є три резервні двигуни, для кожного з яких імовірність бути ввімкненим у даний момент дорівнює 0,3. Знайти ймовірність того, що в даний момент ввімкнено:
принаймні два двигуни;
принаймні один двигун.
6. Металеві заготівки для подальшої обробки надходять із двох цехів: 55 % із першого, 45 % із другого. При цьому продукція з першого цеху містить 3 %, а з другого цеху — 5 % браку. Знайти ймовірність того, що заготівка, яка надійшла на обробку:
1) придатна; 2) бракована.
7. Прядильниця обслуговує 1000 веретен. Імовірність обриву нитки на одному веретені протягом 1 хв дорівнює 0,005. Знайти ймовірність того, що протягом 1 хв буде обрив нитки на двох веретенах.
8. У продавця канцтоварів у шухляді є 16 фломастерів українського виробництва, 8 — угорського і 14 — китайського. Знайти ймовірність того, що серед випадково вибраних п’ятнадцяти фломастерів тринадцять фломастерів виявляться імпортного виробництва.
ВАРІАНТ 31
Практична робота 1.
Дії над комплексними числами.
1. Виконати дії
2. Обчислити: (1+і)8.
3. Розв’язати рівняння:
4. Знайти координати точки М, що зображує комплексне число
Практична робота 2
Дії над комплексними числами.
1. Виконати дії в алгебраїчній формі. Результат записати в тригонометричній та показникових формах .
Практична робота 3
Знаходження границь.
1. Функцію задано графіком, зображеним на рисунку:
Визначити при яких значеннях х функція від’ємна.
2. Визначіть інтервали знакосталості функції .
3.Знайти границю функції .
4. Знайти границю функції .
5. Знайти границю функції .
Практична робота 4
Перша та друга визначні границі.
1. Знайти границю функції .
2. Знайти границю функції .
3. Знайти точки розриву функції .
Практична робота 5
Похідна, диференціал суми, добутку, частки, складеної та оберненої функції.
1. Задана функція у = f(x). Знайти у.
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;
2. Знайти похідну другого порядку: .
3. Нехай — рівняння вільного руху тіла, g — прискорення його вільного падіння. Знайти миттєву швидкість тіла в будь-який момент часу; у момент часу t = 2 c.
Практична робота 6
Похідна. Схема повного дослідження і побудови графіка функції.
1. Визначити екстремуми функції: .
2. Знайти найбільше і найменше значення функції у заданому проміжку: .
3. Знайти точки перегину та інтервали опуклості і вгнутості графіку функції: .
4. Знайти асимптоти таких ліній: .
5. Провести повне дослідження функції і накреслити її графік: .
Практична робота 7
Невизначений інтеграл.
1. Розклавши підінтегральні функції за формулою , знайти такі інтеграли: а) ; б) .
2.
Безпосереднім інтегруванням знайти
інтеграл:
.
3. Знайти інтеграл: .
4. Інтегруванням частинами знайти інтеграл:
5. Методом підстановки знайти інтеграл:
Практична робота 8
Визначений інтеграл.
1. Використовуючи метод підстановки, обчислити визначений інтеграл:
2. Інтегруванням частинами обчислити визначений інтеграл:
3. За допомогою визначеного інтегралу обчислити площу фігури, що обмежено лініями:
Практична робота 9
Дії на векторами. Дії над матрицями.
1. Обчислити довжину медіан трикутника АВС, якщо .
2. Знайти визначники другого порядку: .
3. Обчислити визначник .
4. Знайти добутки матриць: .
5. Знайти обернені до таких матриць: .
Практична робота 10
Дії над матрицями. Розв'язування систем лінійних рівнянь.
1. Розв’язати систему лінійних рівнянь за правилом Крамера. У разі залежності коефіцієнтів системи рівнянь від параметрів дослідити систему на сумісність.
2. Звести до матричного вигляду систему рівнянь і розв’язати методом оберненої матриці:
Практична робота 11
Система координат. Пряма та площина.
1. Обчислити периметр і площу трикутника за координатами його вершин: і
2. Відрізок між точками і поділено на п’ять рівних частин. Знайти координати точок поділу.
3. Знайти відстань між прямими і .
Практична робота 12
Загальне рівняння кривої другого порядку.
1. Звести до канонічного вигляду рівняння кола
2. Знайти кут між асимптотами гіперболи, у якої ексцентриситет дорівнює 2.
3. Визначити тип кривої другого порядку: .
4. Написати рівняння площини, що проходить через пряму і точку .
Практична робота 13
Дії з рядами.
1. Запишіть
три перші члени ряду, а також
2. Запишіть найпростішу формулу n-го члена ряду та перевірте виконання необхідної умови збіжності ряду:
3. Перевірте виконання необхідної умову збіжності ряду:
Практична робота 14
Дії з рядами.
1. Дослідити збіжність ряду, користуючись безпосередньо означенням збіжності ряду. Знайти суму ряду:
2. За допомогою ознак порівняння дослідити збіжність ряду:
3. Дослідити збіжність ряду за допомогою ознаки Даламбера:
Практична робота 15
Розв'язування диференційних рівнянь першого порядку
1. Розв’язати диференційне рівняння першого порядку:
2. Знайти частинні розв’язки диференціального рівнянь, що задовольняють задані початкові умови: при
3.
Знайти
частинні розв’язки диференціального
рівнянь:
,
при
.
Практична робота 16
Розв'язування однорідних диференційних рівнянь
1. Знайти загальний розв’язок однорідного диференціального рівняння:
2. Розв’язати диференціальне рівняння в повних диференціалах:
3. Розв’язати диференціальне рівняння першого порядку: