
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
- •4. Розв’язати рівняння
4. Розв’язати рівняння
Практична робота 17
Дії над ймовірностями.
1. На кожній із шести однакових карток надруковано одну з літер Е, Н, А, І, Т, Г. Картки витягують навмання послідовно і складають зліва направо. Яка ймовірність того, що в результаті вийде слово «НАТІГ»?
2. В автосалоні шість автомобілів мають магнітофони фірми «AIWA», сім — фірми «PHILIPS», десять — фірми «PIONEER». За день продано п’ять авто. Знайти ймовірність того, що всі авто з магнітофонами фірми «PHILIPS» залишилися на своїх місцях.
3. У касовому апараті є вісім 25-копійчаних монет, 10 — вартістю по 50 коп. і 12 — по 5 коп. Знайти ймовірність того, що серед п’яти навмання взятих монет не виявиться жодної вартістю 50 коп.
4. Із шести літер розрізної абетки складено слово «книжка». Маленький хлопчик змішав літери, а потім навмання їх зібрав. Яка ймовірність того, що він знову дістав те саме слово?
5. У цеху є три резервні двигуни, для кожного з яких імовірність бути ввімкненим у даний момент дорівнює 0,3. Знайти ймовірність того, що в даний момент ввімкнено:
принаймні два двигуни;
принаймні один двигун.
6. Металеві заготівки для подальшої обробки надходять із двох цехів: 55 % із першого, 45 % із другого. При цьому продукція з першого цеху містить 3 %, а з другого цеху — 5 % браку. Знайти ймовірність того, що заготівка, яка надійшла на обробку:
1) придатна; 2) бракована.
7. Прядильниця обслуговує 1000 веретен. Імовірність обриву нитки на одному веретені протягом 1 хв дорівнює 0,005. Знайти ймовірність того, що протягом 1 хв буде обрив нитки на двох веретенах.
8. У папці є 8 відомостей, сформованих одним бухгалтером, і 12 відомостей — другим. Навмання беруться три відомості. Знайти ймовірність того, що: 1) всі три відомості сформовано другим бухгалтером; 2) відомостей, сформованих другим бухгалтером, виявиться більше, ніж сформованих першим.
ВАРІАНТ 30
Практична робота 1.
Дії над комплексними числами.
1. Дано комплексні числа z1=-1+6i та z2=2+5i. Знайти суму z1+z2, різницю z2-z1, добуток z1z2 і частку z2/z1.
2. В якій чверті розміщене комплексне число 2+і
3. Розв’язати рівняння:
4. Знайти число спряжене з числом
Практична робота 2
Дії над комплексними числами.
1. Виконати дії в алгебраїчній формі. Результат записати в тригонометричній та показникових формах .
Практична робота 3
Знаходження границь.
1. Функцію задано графіком, зображеним на рисунку:
Визначити при яких значеннях х функція дорівнює нулю.
2. Знайти область визначення функції .
3.Знайти границю функції .
4. Знайти границю функції .
5. Знайти границю функції .
Практична робота 4
Перша та друга визначні границі.
1. Знайти границю функції .
2. Знайти границю функції .
3. Знайти точки розриву функції .
Практична робота 5
Похідна, диференціал суми, добутку, частки, складеної та оберненої функції.
1. Задана функція у = f(x). Знайти у.
1) ;
2) ;
3) ;
4) ;
5) ;
6)
;
7) ;
8)
;
2. Знайти похідну другого порядку: .
3. Знайти тангенси кутів нахилу дотичної до кривої у = х2 у точках М1(½; ¼), М2(–1; 1).
Практична робота 6
Похідна. Схема повного дослідження і побудови графіка функції.
1. Визначити екстремуми функції: .
2. Знайти найбільше і найменше значення функції у заданому проміжку: .
3. Знайти точки перегину та інтервали опуклості і вгнутості графіку функції: .
4. Знайти асимптоти таких ліній: .
5. Провести повне дослідження функції і накреслити її графік: .
Практична робота 7
Невизначений інтеграл.
1. Розклавши підінтегральні функції за формулою , знайти такі інтеграли: а) ; б) .
2. Безпосереднім інтегруванням знайти інтеграл: .
3. Знайти інтеграл: .
4. Інтегруванням частинами знайти інтеграл:
5. Методом підстановки знайти інтеграл:
Практична робота 8
Визначений інтеграл.
1. Використовуючи метод підстановки, обчислити визначений інтеграл:
2. Інтегруванням частинами обчислити визначений інтеграл:
3. За допомогою визначеного інтегралу обчислити площу фігури, що обмежено лініями:
Практична робота 9
Дії на векторами. Дії над матрицями.
1. Знайти вершини трикутника, знаючи середини його сторін .
2. Знайти визначники другого порядку: .
3. Розкладаючи за другим стовпчиком, обчислити визначник: .
4. Обчислити вираз .
5. Знайти обернені до таких матриць: .
Практична робота 10
Дії над матрицями. Розв'язування систем лінійних рівнянь.
1. Розв’язати систему лінійних рівнянь за правилом Крамера. У разі залежності коефіцієнтів системи рівнянь від параметрів дослідити систему на сумісність.
2. Звести до матричного вигляду систему рівнянь і розв’язати методом оберненої матриці:
Практична робота 11
Система координат. Пряма та площина.
1. Обчислити довжину медіан трикутника АВС, якщо .
2. Дано три вершини паралелограма: Знайти координати четвертої вершини , що протилежна вершині В.
3. Визначте центр і радіус кола, що задане рівнянням: .
Практична робота 12
Загальне рівняння кривої другого порядку.
1. Скласти рівняння дотичної до кола в точці .
2. Еліпс проходить через точки і . Скласти його канонічне рівняння.
3. Визначити тип кривої другого порядку: .
4.
Написати рівняння площини, що проходить
через пряму
і точку
.
Практична робота 13
Дії з рядами.
1. Запишіть три перші члени ряду, а також
2. Запишіть найпростішу формулу n-го члена ряду та перевірте виконання необхідної умови збіжності ряду:
3. Перевірте виконання необхідної умову збіжності ряду:
Практична робота 14
Дії з рядами.
1. Дослідити збіжність ряду, користуючись безпосередньо означенням збіжності ряду. Знайти суму ряду:
2. За допомогою ознак порівняння дослідити збіжність ряду:
3.
Дослідити збіжність ряду за допомогою
ознаки Даламбера:
Практична робота 15
Розв'язування диференційних рівнянь першого порядку
1. Розв’язати диференційне рівняння першого порядку:
2. Знайти частинні розв’язки диференціального рівнянь, що задовольняють задані початкові умови: при
3. Знайти частинні розв’язки диференціального рівнянь: , при .
Практична робота 16
Розв'язування однорідних диференційних рівнянь
1. Знайти загальний розв’язок однорідного диференціального рівняння:
2. Розв’язати диференціальне рівняння в повних диференціалах:
3. Розв’язати диференціальне рівняння першого порядку: