
- •Оглавление
- •§1. Экспериментальные основы квантовой механики
- •§2. Классическое и квантовое описание системы
- •[§3.] Принцип неопределенности
- •[§4.] Полный набор динамических переменных
- •[§5.] Постулаты квантовой механики
- •§6. Роль классической механики в квантовой механике
- •[§7.] Волновая функция и ее свойства
- •[§8.] Принцип суперпозиции состояний
- •§9. Понятие о теории представлений
- •[§10.] Операторы в квантовой механике
- •Транспонированный оператор
- •[§11.] Собственные функции и собственные значения эрмитовых операторов. Случай дискретного (и непрерывного)* спектра
- •§12. Среднее значение измеряемой величины
- •§13. Вероятность результатов измерения
- •§14. Коммутативность операторов и одновременная измеримость физических величин (1/2*)
- •[§15.] Операторы координаты , импульса , момента импульса , энергии .
- •§16. Решение задачи на собственные функции и собственные значения для оператора
- •§17. Решение задачи на собственные функции и собственные значения для оператора .
- •§ 18. Вычисление коммутаторов, содержащих операторы (и *).
- •[§ 19.] Волновое уравнение
- •§ 20 Производная оператора по времени
- •§ 21 Интегралы движения в квантовой механике
- •§22. Флуктуации физических величин (1/2*)
- •§ 23. Неравенства Гайзенберга. (1/2*)
- •[§ 24.] Оператор Гамильтона различных систем
- •§ 25. Стационарное состояние различных систем
- •[§ 26.] Решение волнового уравнения в случае свободной материальной точки
- •§ 27. Решение волнового уравнения в случае бесконечно глубокой потенциальной ямы
- •[§ 28.] Собственный механический момент (спин)
- •§ 29*. Операторы и и их свойства
- •§ 30. Спиновая переменная волновой функции
- •§ 31. Матрицы Паули (и их свойства)*.
- •§ 32. Принцип тождественности
- •§33. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: нулевое и первое приближения
- •A.1. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: второе приближение
- •A.2. Критерий применимости теории возмущений
- •A.3. Стационарная теория возмущений в случае близких энергетических уровней.
- •Экзаменационные вопросы по курсу "Квантовая теория".
- •Экзаменационные задачи по курсу "Квантовая теория".
- •Экзаменационные вопросы по курсу "Квантовая теория".(минимум)
- •Экзаменационные задачи по курсу "Квантовая теория".(минимум)
- •Решения задач по курсу "Квантовая теория"
§6. Роль классической механики в квантовой механике
Два момента присутствия классической механики в квантовой механике:
Измерение микросистем (квантово-механических систем) проводятся с помощью классических приборов (систем).
Принцип соответствия – переход квантово-механических результатов в классическую механику ( 0, можно ввести такую величину размерности действия A, что
). По Эйнштейну этот переход характеризуется
. Если
, то переход в классическую механику Ньютона.
[§7.] Волновая функция и ее свойства
Волновая функция динамических переменных и времени определяет состояние системы с точностью до фазового множителя, т. е.
т. е.
и
описывает
одно и тоже состояние, где
- фазовый множитель. Волновая функция
– комплексная, непрерывная, конечная.
У нее почти всюду существует конечная
производная по координате, но в некоторых
точках может терпеть скачек (особые
точки). Функции
-
нормируемые, т.е. квадратично интегрируемы.
Но для свободной материальной точки
не
нормируема.
-
элементарный объем
-
вероятность того, что динамические
переменные
лежат в интервале
.
Это определение справедливо для
квадратично интегрируемых функций. Для
не квадратично интегрируемых функций
величина
пропорциональна плотности вероятности.
[§8.] Принцип суперпозиции состояний
Если мы имеем состояния системы,
описываемые функциями
,
то суперпозиции этих функций также
отвечает некоторое состояние этой
системы:
Отсюда получаем: уравнения, которым подчиняется функция должны быть линейными. Этот же вывод распространяется и на операторы в квантовой механике. Принцип суперпозиции требует использования в квантовой механике линейных операторов.
§9. Понятие о теории представлений
Представление – это совокупность переменных, в которых решается задача (т. е. набор динамических переменных). Рассмотрим одну материальную точку. Число степеней свободы n=3. Здесь могут быть 2 случая:
Под понимаем
- имеем -представление (координатное)
Оператор координаты
Оператор импульса
Здесь
Под понимаем
- имеем
-представление (импульсное)
Оператор координаты
Оператор импульса
Здесь
Мы в основном будем использовать -представление. Результаты измерения от вида представления не зависят!
[§10.] Операторы в квантовой механике
В силу принципа суперпозиции в квантовой механике используются линейные операторы. Задача на собственные функции и собственные значения:
Определение оператора:
Свойство линейности:
Если
,
то
т.к.
,
то
Сопряженный оператор – это оператор, который связан с данным оператором соотношением:
или
Тогда получаем:
Если
- то оператор называется эрмитовым
(самосопряженным).
Транспонированный оператор
Отметим следующие свойства:
1)
(10.1)
Из выражения (10.1) получаем:
2)
3)
Сумма операторов:
.
Это операторное равенство предполагает
Произведение операторов:
,
тогда
.
Это операторное равенство предполагает
В общем случае
не коммутативны
Коммутатор
Если
,
то операторы
и
называются
коммутативными (операторы
и
коммутируют).
Если
,
то операторы
и
называются
не коммутативными (операторы
и
не коммутируют).
Так как физические величины вещественны, то число операторов в квантовой механике ограничено. Собственные значения эрмитовых операторов вещественны, значит только их можно ставить в соответствие физическим величинам.
Запишем определение среднего:
Так как результаты измерений вещественны,
то
тоже должно быть вещественным, т.е.
(10.2)
тогда
,
т.е.
Обозначим
,
тогда
Тогда из (10.2) получаем
(10.3)
Из (10.3) имеем для любых :
,
,
где
(сопряженный
и транспонированный).