Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЦСУ Кобец.doc
Скачиваний:
19
Добавлен:
14.08.2019
Размер:
4.93 Mб
Скачать
    1. Параметры импульсного элемента (иэ).

Коэффициент усиления ки ИЭ – это отношение величины модулированного параметра выходной последовательности импульсов к величине входного сигнала

xвх (t) в соответствующие дискретные моменты времени; период повторения импульсов Т или частота повторения импульсов ωо=2π/Т; длительность импульсов

τ =γТ, где γ – скважность импульсов, показывающая какую часть периода повторения импульсов занимает длительность импульса или относительная длительность импульса γ= τ /Т.

Форма импульса S (t) может быть прямоугольной, треугольной, синусоидальной, экспоненциальной и т.д.

    1. Эквивалентная схема импульсной системы

Для облегчения исследования АИС их реальные ИЭ заменяют последовательным соединением простейшего ИЭ (ПИЭ) и формирующего элемента (ФЭ) (рис. 8 а, б, в).

Рисунок 8

ПИЭ под воздействием непрерывного xвх (t) формирует мгновенные, бесконечно большие амплитуды, равностоящие один от другого импульсы, площади которых равны значениям входного сигнала в моменты, предшествующие возникновению импульсов, т.н. δ – функцию (дельта-функцию).

Формирующий элемент (ФЭ) представляет собой непрерывную часть и характеризуется тем, что его реакция на импульс вида δ – функции совпадает по форме S (t) с импульсами на выходе реального ИЭ.

Тогда функциональная схема АИС имеет вид (рис.9).

Рисунок 9

Структурная схема АИС

Реакция формирующего элемента на мгновенный импульс типа δ – функции является импульсной переходной функцией ωф(t) этого элемента.

Передаточная функция ФЭ по известному соотношению

где ωф(t) – весовая функция (форма импульса).

Таким образом для определения передаточной функции Wф(р) формирующего єлемента надо определить изображение Лапласа импульса на выходе реального ИЭ. Тогда линейную АИС представляют в виде последовательного соединения простейшего импульсного элемента с передаточной функцией, равной единице, формирующего элемента с передаточной функцией Wф(р) и непрерывной части системы с передаточной функцией Wн(р) (рис.10).

Рисунок 10

Соединение ФЭ и НЧ приведенной непрерывной части системы (ПНЧ) с передаточной функцией

Структурная схема линейной АИС имеет вид, показанный на рис. 11.

Рисунок 11

2 Математические основы теории импульсных и цифровых сау

2.1 понятие о решетчатых функциях

Пусть задана некоторая непрерывная функция f(t) (рис.12).

Рисунок 12

Заменим в непрерывной функции fт(t) аргумент t соответствующими дискретными равностоящими друг от друга значениями, т.е. t = nT, где n = 0,1,2,3,… Тогда ординаты непрерывной функции f(t), соответствующие дискретным равностоящим друг от друга значениям независимой переменной t = nT, образуют решетчатую функцию, ординаты которой называют дискретными (рис.13).

Значения решетчатой функции между значениями независимой переменой равны 0 (нулю).

Рисунок 13

Решетчатую функцию обозначают

.

где T – период дискретности;

n – любое целое число.

Чтобы получит передаточную функцию f (nT), соответствующую полной непрерывной функции f(t), надо в функции f(t) заменить t на nT.

Поскольку решетчатая функция не может полностью отразить свойства непрерывной функции, то для выявления поведения непрерывной функции между отдельными дискретными моментами времени вводят промежуточное фиксирование время ±∆t которое может изменяться от 0 до Т, т.е. –Т ≤ ∆ t ≤Т. Непрерывный аргумент t в этом случае можно представить в виде суммы дискретного аргумента и приращения ∆t׃t = nt ± ∆t.

Решетчатая функция f(nt ± ∆t)называется смещенной функцией по отношению к функции f (nT) на величину ± ∆ t и обозначается f(nТ, ∆t). Изменяя параметр ∆t непрерывно от 0 до Т, получают функцию f(nТ,∆t), тождественную f(t).

Таким образом, смещенную решетчатую функцию с непрерывно изменяющимся параметром ∆t можно рассматривать как иную форму записи непрерывной функции.

Часто оказывается удобным считать расстояние между дискретными значениями независимой переменой, т.е. между дискретами, равными единице. Для этой цели в f(t) вводиться предварительно новая независимая переменная - относительное время , тогда , откуда .

Ради простоты обозначают через . Решетчатая функция, соответствующая при значениях , равных .

Например: задана непрерывная функция , тогда соответствующая ей решетчатая функция (рис. 14).

Рисунок 14

Смещенные решетчатые функции f(nТ,∆t) в этом случае записывают в виде f(n,ε), где - относительное изменение ∆t. Аргументы n и ε в функции f(n,ε) положительны и являются параметрами: f(nТ+∆t)= f(n+ε)Т= f(n,ε).