Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы ЭВМ.doc
Скачиваний:
1
Добавлен:
06.08.2019
Размер:
2.64 Mб
Скачать

Отсутствующие вопросы:

№28. Импульсные устройства (арифметико-логическое устройство)

№37. Особенности системы команд 16-ти разрядного процессора. Система команд пересылок.

№49. Выполнение арифметических операций в ЭВМ в дополнительном коде.

1

Системы счисления. Перевод чисел из одной системы счисления в другую.

Cистемы счисления

Обычное десятичное число состоит из цепочки десятичных разрядов и иногда десятичной запятой. Общая форма записи показана на рис. А. 1. Десятка выбрана в качестве основы возведения в степень (это называется основанием системы счисления), поскольку мы используем 10 цифр. В компьютерах удобнее иметь дело

с другими основаниями системы счисления. Самые важные из них — 2, 8 и 16. Соответствующие системы счисления называются двоичной, восьмеричной и шестнадцатеричной соответственно.

k-ичная система требует k различных символов для записи разрядов с 0 по k—1. Десятичные числа строятся из 10 десятичных цифр:

0123456789

Двоичные числа, напротив, строятся только из двух двоичных цифр:

01

Восьмеричные числа состоят из восьми цифр:

01234567

Для шестнадцатеричных чисел требуется 16 цифр. Это значит, что нам нужно 6 новых символов. Для обозначения цифр, следующих за 9, принято использовать прописные латинские буквы от А до F. Таким образом, шестнадцатеричные числа строятся из следующих цифр.

0123456789ABCDEF

Двоичный разряд (то есть 1 или 0) обычно называют битом. На рис. А.2 десятичное число 2001 представлено в двоичной, восьмеричной и шестнадцатеричной системе. Число 7В9 очевидно шестнадцатеричное, поскольку символ В встречается только в шестнадцатеричных числах. А число 111 может быть в любой из четырех систем счисления. Чтобы избежать двусмысленности, нужно использовать индекс для указания основания системы счисления.

В таблице АЛ ряд неотрицательных целых чисел представлен в каждой из четырех систем счисления.

Преобразование чисел из одной системы счисления в другую

Преобразовывать числа из восьмеричной в шестнадцатеричную или двоичную систему и обратно легко. Чтобы преобразовать двоичное число в восьмеричное, нужно разделить его на группы по три бита, причем три бита непосредственно слева от двоичной запятой формируют одну группу, следующие три бита слева от

этой группы формируют вторую группу и т. д. Каждую группу по три бита можно преобразовать в один восьмеричный разряд со значением от 0 до 7 (см. первые строки табл. А.1). Чтобы дополнить группу до трех битов, нужно спереди приписать один или два нуля. Преобразование из восьмеричной системы в двоичную

тоже тривиально. Каждый восьмеричный разряд просто заменяется эквивалентным 3-битным числом. Преобразование из 16-ричной в двоичную систему, по сути, сходно с преобразованием из 8-ричной в двоичную систему, только каждый 16-ричный разряд соответствует группе из четырех битов, а не из трех. На рис. А.З приведены примеры преобразований из одной системы в другую.

Преобразование десятичных чисел в двоичные можно совершать двумя разными способами. Первый способ непосредственно вытекает из определения двоичных чисел. Самая большая степень двойки, меньшая, чем число, вычитается из этого числа. Та же операция проделывается с полученной разностью. Когда число раз-

ложено по степеням двойки, двоичное число может быть получено следующим образом. Единички ставятся в тех позициях, которые соответствуют полученным степеням двойки, а нули — во всех остальных позициях.

Второй способ — деление числа на 2. Частное записывается непосредственно под исходным числом, а остаток (0 или 1) записывается рядом с частным. То же проделывается с полученным частным. Процесс повторяется до тех пор, пока не останется 0. В результате должны получиться две колонки чисел — частных и остатков. Двоичное число можно считать из колонки остатков снизу вверх. На рисунке А.4 показано, как происходит преобразование из десятичной в двоичную систему.

Двоичные числа можно преобразовывать в десятичные двумя способами. Первый способ — суммирование степеней двойки, которые соответствуют биту 1 в двоичном числе. Например:

10110=2^4+2^2+2'=16+4+2=22

Второй способ. Двоичное число записывается вертикально по одному биту в строке, крайний левый бит находится внизу. Самая нижняя строка — это строка 1, затем идет строка 2 и т. д. Десятичное число строится напротив этой колонки. Сначала обозначим строку 1. Элемент строки п состоит из удвоенного элемента строки п-1 плюс бит строки п (0 или 1). Элемент, полученный в самой верхней строке, и будет ответом. Метод проиллюстрирован на рис. А.5.

Преобразование из десятичной в восьмеричную или 16-ричную систему можно выполнить либо путем преобразования сначала в двоичную, а затем в нужную нам систему, либо путем вычитания степеней 8 или 16.

2

Соглашения о знаке и запятой. Кодирование информации.

Отрицательные двоичные числа

На протяжении всей истории цифровых компьютеров для репрезентации отрицательных чисел использовались 4 различные системы. Первая из них называется системой со знаком. В такой системе крайний левый бит — это знаковый бит (0 — это «+», а 1 — это «-»), а оставшиеся биты показывают абсолютное значение числа.

Стандарт IEEE 754

До 80-х годов каждый производитель имел свой собственный формат чисел с плавающей точкой. Все они отличались друг от друга. Более того, в некоторых из них арифметические действия выполнялись неправильно, поскольку арифметика с плавающей точкой имеет некоторые тонкости, которые не очевидны для обычного разработчика аппаратного обеспечения.

Чтобы изменить эту ситуацию, в конце 70-х годов IEEE учредил комиссию для стандартизации арифметики с плавающей точкой. Целью было не только дать возможность переносить данные с одного компьютера на другой, но и обеспечить разработчиков аппаратного обеспечения заведомо правильной моделью. В результате получился стандарт IEEE 754 (IEEE, 1985). В настоящее время большинство процессоров (в том числе Intel, SPARC и JVM) содержат команды с плавающей точкой, которые соответствуют этому стандарту. В отличие от многих стандартов, которые представляли собой неудачные компромиссы и мало кого устраивали, этот стандарт неплох, в большей степени благодаря тому, что его изначально разрабатывал один человек, профессор математики университета Беркли Вильям Каган (William Kahan). Этот стандарт будет описан ниже.

Стандарт определяет три формата: с одинарной точностью (32 бита), с удвоенной точностью (64 бита) и с повышенной точностью (80 битов). Формат с повышенной точностью предназначен для сокращения ошибок округления. Он применяется главным образом в арифметических устройствах с плавающей точкой, поэтому мы не будем о нем говорить. В форматах с одинарной и удвоенной точностью применяется основание возведения в степень 2 для мантисс и смещенная экспонента. Форматы представлены на рис. Б.З.

Оба формата начинаются со знакового бита для всего числа; 0 указывает на положительное число, а 1 — на отрицательное. Затем следует смещенная экспонента. Для формата одинарной точности смещение (excess) 127, а для формата удвоенной точности смещение 1023. Минимальная (0) и максимальная (255 и 2047)

экспоненты не используются для нормализованных чисел. У них есть специальное предназначение, о котором мы поговорим ниже. В конце идут мантиссы по 23 и 52 бита соответственно.

Нормализованная мантисса начинается с двоичной запятой, за которой следует 1 бит, а затем остаток мантиссы. Следуя практике, начатой с компьютера PDP-11, компьютерщики осознали, что 1 бит перед мантиссой сохранять не нужно, поскольку можно просто предполагать, что он есть. Следовательно, стандарт определяет мантиссу следующим образом. Она состоит из неявного бита, который всегда равен 1, неявной двоичной запятой, за которыми идут 23 или 52 произвольных бита. Если все 23 или 52 бита мантиссы равны 0, то мантисса имеет значение 1,0. Если все биты мантиссы равны 1, то числовое значение мантиссы немного меньше, чем 2,0. Во избежание путаницы в английском языке для обозначения комбинации из неявного бита, неявной двоичной запятой и 23 или 52 явных битов вместо термина «мантисса» (mantissa) используется термин significand. Все нормализованные числа имеют significand s в диапазоне l<s<2.

Числовые характеристики стандарта IEEE для чисел с плавающей точкой даны в табл. Б.2. В качестве примеров рассмотрим числа 0,5, 1 и 1,5 в нормализованном формате с одинарной точностью. Они представлены шестнадцатеричными числами 3F000000, 3F800000 и 3FC00000 соответственно.

Традиционные проблемы, связанные с числами с плавающей точкой, — что делать с переполнением, потерей значимости и неинициализированными числами. Подход, используемый в стандарте IEEE, отчасти заимствован от машины CDC 6600. Помимо нормализованных чисел в стандарте предусмотрено еще 4 типа

чисел (рис. Б.4).

Проблема возникает в том случае, если абсолютное значение (модуль) результата меньше самого маленького нормализованного числа с плавающей точкой, которое можно представить в этой системе. Раньше аппаратное обеспечение действовало одним из двух способов: либо устанавливало результат на 0, либо вызывало ошибку из-за потери значимости. Ни один из этих двух способов не является удовлетворительным, поэтому в стандарт IEEE введены ненормализованные числа. Эти числа имеют экспоненту 0 и мантиссу, представленную следующими 23 или 52 битами. Неявный бит 1 слева от двоичной запятой превращается в 0. Ненормализованные числа можно легко отличить от нормализованных, поскольку у последних не может быть экспоненты 0.

Самое маленькое нормализованное число с одинарной точностью содержит 1 в экспоненте и 0 в мантиссе и представляет 1,0х2~126. Самое большое ненормализованное число содержит 0 в экспоненте и все единицы в мантиссе и представляет примерно 0,9999999х2~127, то есть почти то же самое число. Следует отметить, что это число содержит только 23 бита значимости, а все нормализованные числа — 24 бита.

По мере уменьшения результата при дальнейших вычислениях экспонента попрежнему остается равной 0, а первые несколько битов мантиссы превращаются в нули, что сокращает и значение, и число значимых битов мантиссы. Самое маленькое ненулевое ненормализованное содержит 1 в крайнем правом бите, а все остальные биты равны 0. Экспонента представляет 2~127, а мантисса — 2 23, поэтому значение равно 2~150. Такая схема предусматривает постепенное исчезновение значимых разрядов, а не перескакивает на 0, когда результат нельзя выразить в виде нормализованного числа.

В этой схеме присутствуют 2 нуля, положительный и отрицательный, определяемые по знаковому биту. Оба имеют экспоненту 0 и мантиссу 0. Здесь тоже бит слева от двоичной запятой по умолчанию 0, а не 1. С переполнением нельзя справиться постепенно. Вместо этого существует специальное представление бесконечности: с экспонентой, содержащей все единицы, и мантиссой, равной 0. Это число можно использовать в качестве операнда. Оно подчиняется обычным математическим правилам для бесконечности. Например, бесконечность и любое число в сумме дают бесконечность. Конечное число разделить на бесконечность равно 0. Любое конечное число, разделенное на 0, стремится к бесконечности.

А что получится, если бесконечность разделить на бесконечность? Результат не определен. Для такого случая существует другой специальный формат, NaN (Not a Number — не число). Его тоже можно использовать в качестве операнда.

3

Представление чисел с фиксированной и плавающей запятой

Числа с плавающей точкой

Диапазон чисел, используемых при различных вычислениях, очень велик. Например, в астрономические вычисления может включаться масса электрона (9x10^-28 граммов) и масса Солнца (2x10^33 граммов). Диапазон чисел здесь превышает 1060. Эти числа можно представить следующим образом:

0000000000000000000000000000000000.0000000000000000000000000009

2000000000000000000000000000000000.0000000000000000000000000000

При всех вычислениях должны сохраняться 34 разряда слева от десятичной запятой и 28 разрядов справа от нее. Это даст 62 значимых разряда в результатах. На бинарном компьютере можно использовать арифметику с многократно увеличенной точностью, чтобы обеспечить достаточную значимость. Однако мы не можем определить массу Солнца с точностью даже до пяти значимых разрядов, не говоря уже о 62. В действительности практически невозможно выполнить какие-либо измерения с точностью до 62 знаков. Можно было бы хранить все промежуточные результаты с точностью до 62 значимых разрядов, а перед выводом окончательных результатов отбрасывать 50 или 60 разрядов, но процессор и память тратили бы на это слишком много времени. Нам нужна такая система для представления чисел, в которой диапазон выражаемых чисел не зависит от числа значимых разрядов. В этом приложении мы расскажем о такой системе. В ее основе лежит экспоненциальное представление чисел, которое применяется в физике, химии и машиностроении.

Принципы представления с плавающей точкой

Числа можно выражать в следующей общепринятой экспоненциальной форме:

и=/х10^е

где / называется дробью, или мантиссой, а е (это положительное или отрицательное целое число) называется экспонентой. Компьютерная версия такого представления называется представлением с плавающей точкой. Ниже приведены примеры чисел в такой записи.

3,14 =0,314х10^1=3,14х10^0

0,000001 =0,1х10^-5=1,0х10^-6

1941 = 0,1941х10^4=1,941х10^3

Область значений определятся по числу разрядов в экспоненте, а точность определяется по числу разрядов в мантиссе. Существует несколько способов представления того или иного числа, поэтому одна форма выбирается в качестве стандартной. Чтобы изучить свойства такого способа представления, рассмотрим представление R с трехразрядной мантиссой со знаком в диапазоне 0,l≤|f|<l и двухразрядной экспонентой со знаком. Эти числа находятся в диапазоне от +0,100x10"" до +0,999х10^+", то есть простираются почти на 199 значимых разрядов, хотя для записи числа требуется всего 5 разрядов и 2 знака.

Числа с плавающей точкой можно использовать для моделирования системы действительных чисел в математике, хотя здесь есть несколько существенных различий. На рис. Б.1 представлена ось действительных чисел. Она разбита на 7 областей:

1. Отрицательные числа меньше -0,999x10".

2. Отрицательные числа от -0,999x10" до -0,100x10"".

3. Отрицательные числа от -0,1ООх 10"" до нуля.

4. Нуль.

5. Положительные числа от 0 до 0,1ООх 10"".

6. Положительные числа от 0,100x10"" до 0,999x10".

7. Положительные числа больше 0,999x10".

Первое отличие действительных чисел от чисел с плавающей точкой, которые записываются тремя разрядами в мантиссе и двумя разрядами в экспоненте, состоит в том, что последние нельзя использовать для записи чисел из областей 1,3, 5 и 7. Если в результате арифметической операции получится число из области 1 или 7 (например, 10^60х10^60=10^120), то произойдет ошибка переполнения и результат будет неверным. Причина — ограничение области значений чисел в данном представлении. Точно так же нельзя выразить результат из области 3 или 5. Такая ситуация называется ошибкой из-за потери значимости. Эта ошибка менее серьезна, чем ошибка переполнения, поскольку часто нуль является вполне удовлетворительным приближением для чисел из областей 3 или 5. Остаток счета в банке на 10"102 не сильно отличается от остатка счета 0.

Второе важное отличие чисел с плавающей запятой от действительных чисел — это их плотность. Между любыми двумя действительными числами хну существует другое действительное число независимо от того, насколько близко к у расположен х. Это свойство вытекает из того, что между любыми различными действительными числами хну существует действительное число z=(x+y)/2. Действительные числа формируют континуум.

Числа с плавающей точкой континуума не формируют. В двухзнаковой пятиразрядной системе можно выразить ровно 179100 положительных чисел, 179100 отрицательных чисел и 0 (который можно выразить разными способами), то есть всего 358201 чисел. Из бесконечного числа действительных чисел в диапазоне от -10^+10º до +0,999x10" в этой системе можно выразить только 358201 число. На рис. Б.1 эти числа показаны точками. Результат вычислений может быть и другим числом, даже если он находится в области 2 или 6. Например, результат деления числа +0,100x103 на 3 нельзя выразить точно в нашей системе

представления. Если полученное число нельзя выразить в используемой системе представления, нужно брать ближайшее число, которое представимо в этой системе. Такой процесс называется округлением.

Промежутки между смежными числами, которые можно выразить в представлении с плавающей запятой, во второй и шестой областях не постоянны. Промежуток между числами +0,998x10" и +0,999x10" гораздо больше промежутка между числами +0,998x10° и +0,999x10°. Однако если промежутки между числом и его соседом выразить как процентное отношение от этого числа, большой разницы в промежутках не будет. Другими словами, относительная погрешность, полученная при округлении, приблизительно равна и для малых, и для больших чисел. Выводы, сделанные для системы представления с трехразрядной мантиссой

и двухразрядной экспонентой, справедливы и для других систем представления чисел. При изменении числа разрядов в мантиссе или экспоненте просто сдвигаются границы второй и шестой областей и меняется число представляемых единиц в этих областях. С увеличением числа разрядов в мантиссе увеличивается плотность

элементов и, следовательно, точность приближений. С увеличением количества разрядов в экспоненте размер областей 2 и 6 увеличивается за счет уменьшения областей 1, 3, 5 и 7. В табл. Б.1 показаны приблизительные границы области 6 для десятичных чисел с плавающей точкой с различным количеством разрядов в мантиссе и экспоненте.

Вариант такого представления применяется в компьютерах. Основа возведения в степень — 2,4,8 или 16, но не 10. В этом случае мантисса состоит из цепочки двоичных, четверичных, восьмеричных и шестнадцатеричных разрядов. Если крайний левый разряд равен 0, все разряды можно сместить на один влево, а экспоненту уменьшить на 1, не меняя при этом значения числа (исключение составляет

ситуация потери значимости). Мантисса с ненулевым крайним левым разрядом называется нормализованной.

Нормализованные числа обычно предпочитаются ненормализованным, поскольку существует только одна нормализованная форма, а ненормализованных форм может быть много. Примеры нормализованных чисел с плавающей точкой даны на рис. Б.2. для двух основ возведения в степень. В этих примерах показана 16-битная мантисса (включая знаковый бит) и 7-битная экспонента. Запятая находится слева от крайнего левого бита мантиссы и справа от экспоненты.

4

Примеры арифметических операций в двоичной системе счисления.

Двоичная арифметика

Ниже приведена таблица сложения для двоичных чисел (рис. А.6).

Сложение двух двоичных чисел начинается с крайнего правого бита. Суммируются соответствующие биты в первом и втором слагаемом. Перенос совершается на одну позицию влево, как и в десятичной арифметике. В арифметике с дополнением до единицы перенос от сложения крайних левых битов прибавляется к крайнему правому биту. Этот процесс называется циклическим переносом. В арифметике с дополнением до двух перенос, полученный в результате сложения крайних левых битов, просто отбрасывается. Примеры арифметических действий наддвоичными числами показаны на рис. А.7.

Если первое и второе слагаемые имеют противоположные знаки, ошибки переполнения не произойдет. Если они имеют одинаковые знаки, а результат — противоположный знак, значит, произошла ошибка переполнения и результат неверен. И в арифметике с дополнением до единицы, и в арифметике с дополнением до двух переполнение происходит тогда и только тогда, когда перенос в знаковый бит

отличается от переноса из знакового бита. В большинстве компьютеров перенос из знакового бита сохраняется, но перенос в знаковый бит не виден из ответа, поэтому обычно вводится специальный бит переполнения.

5

Электронные элементы ЭВМ. P-N переход.

Электронно-дырочный переход - основной элемент биполярных приборов, pn - переход создают в кристалле изменением типа его проводимости, путем введения акцепторной и донорной примеси. На рис. 19 схематически показан кристалл с резким pn переходом и распределение акцепторной и донорной примеси в нем.

Рис. 19. Схема кристалла с резким pn переходом (вверху) и распределение акцепторной (Na) и донорной примеси в нем (Nd).

Когда образуется pn переход, между p и n областями происходит обмен электронами и дырками и энергией так, что между областями устанавливается равновесие, и характеризующий равновесное состояние уровень Ферми становится единым для всей системы. Области, находящиеся на значительном удалении от места контакта p и n областей, не подвержены влиянию pn перехода. Таким образом, условия сохранения свойств отдельных материалов и единства уровня Ферми для всей системы приводят к появлению скачка в области pn перехода. Этот скачок соответствует возникновению потенциального барьера, который препятствует переходу основных носителей в потенциальную область (дырок из p в n область и электронов из n в p область). Потенциальный барьер возникает в результате появления внутреннего электрического поля и соответствующей ему разности потенциалов Uк, которую принято называть контактной.

Т.е. контактная разность потенциалов равна разности термодинамических работ выхода или разности энергии уровней Ферми в материалах p и n типов.

Таким образом, потенциальный барьер в pn переходе тем выше, чем сильнее легированы p и n области.

Рассмотрим, какова же физическая природа явлений, приводящих к возникновению на границе между p и n областями потенциального барьера. Если бы между p и n областями не было контакта, то каждая из них была бы электронейтральна, при этом соблюдались бы следующие условия: pp = Na-, nn = Nd+. При наличии между p и n областями контакта свободные электроны будут уходить из n области в соседнюю, оставляя вблизи границы в n области нескомпенсированный заряд положительных доноров - Nd+. Свободные дырки будут уходить из p области в соседнюю, оставляя вблизи границы в p области нескомпенсированный заряд отрицательных акцепторов - Na-. Поскольку доноры и акцепторы связаны с решеткой, возникший двойной слой заряда так же встроен в решетку и не может перемещаться. При этом в области пространственного заряда (ОПЗ) возникает электрическое поле, направленное от n области к p области, препятствующее переходу основных носителей через границу областей. Чем больше переходит основных носителей, тем больше нескомпенсированный заряд в ОПЗ, тем выше энергетический барьер, препятствующий переходу. Равновесие наступает при некотором условии. При этом следует отметить, что основные носители из области пространственного заряда перебрасываются в соседнюю область, где они становятся неосновными. В самой же области пространственного заряда концентрация носителей мала (она близка к собственной), поскольку все попадающие в ОПЗ носители выбрасываются из этой области электрическим полем. Поэтому можно считать, что область пространственного заряда обладает проводимостью на несколько порядков меньшей, чем легированные p и n области. Поэтому в дальнейшем будем считать, что сопротивление областей вне ОПЗ на несколько порядков меньше, чем сопротивление ОПЗ и, если к полупроводниковой структуре с одним pn переходом приложено внешнее напряжение, то оно падает, в основном на ОПЗ, а в прилегающих к переходу p и n областях электрического поля практически нет.

Диаграммы рис. 21 иллюстрируют рассмотренные процессы. Область, в которой имеется электрическое поле (ОПЗ), на рисунке обозначена d.

Рис. 21. Диаграмма, поясняющая возникновение области пространственного заряда (двойного заряженного слоя) в pn переходе.

Внимательно проанализировав диаграмму рис. 21, можно еще раз убедиться, что направление контактного электрического поля (Еконт) таково, что оно препятствует диффузии в соседнюю область основных носителей заряда и способствует переходу неосновных. Именно эта асимметрия потенциального барьера по отношению к носителям различного типа в конечном счете и приводит к асимметрии вольтамперной характеристики электронно-дырочного перехода относительно полярности внешнего напряжения. При этом, при одной полярности внешнего напряжения, поле внешней батареи будет складываться с внутренним полем Еконт, увеличивая барьер, при другой вычитаться, уменьшая барьер.

6

Электронные элементы ЭВМ. Биполярный транзистор.

Транзисторы - Биполярный транзистор

Биполярный транзистор - электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Устройство плоскостного биполярного транзистора показано на рисунке.

Рис. 1 - Принцип устройства плоскостного транзистора.

Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности. На рисунке транзистор типа n-p-n, у которого средняя область с дырочной, а крайние с электронной электропроводностью.

Средняя область называется базой, одна из крайних областей - эмиттером, другая - коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный - между базой и эмиттером и коллекторный - между базой и коллектором. Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора.

Транзистор работает в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном - обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.

Физические процессы

Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном - обратное (рис. 2). Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.

Рис. 2 - Движение электронов и дырок в транзисторе типа n-p-n.

Соответственно, как и раньше, темные маленькие кружки со стрелками - электроны, красные - дырки, большие кружки - положительно и отрицательно заряженные атомы доноров и акцепторов.

Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.

Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода u(б-э) влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усление электрических колебаний с помощью транзистора. Рассмотрим физические процессы.

При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора. Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.

Если толщина базы достаточно мала и концентрация дырок в ней невилика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этого возникает ток базы. Ток база является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Именно поэтому базовую область делают очень тонкой и уменьшают в ней концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать с дырками и, повторюсь, ток базы будет незначительным.

Когда к эмиттерному переходу не приложено напряжение, можно считать, что в этом переходе тока нет. Тогда область коллекторного перехода имеет значительное сопротивление постоянному току, поскольку основные носители зарядов удаляются от этого перехода и по обе границы создаются области, обедненные этими носителями. Через коллекторный переход протекает очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей.

Если же под действием входного напряжения возникает значительный ток эмиттера, то в базу со стороны эмиттера инжектируются электроны, для данной области являющиеся неосновными носителями. Они доходят до коллекторного перехода не успевая рекомбинировать с дырками при прохождении через базу. Чем больше ток эмиттера, тем больше электронов приходит к коллектору, тем меньше становится его сопротивление, следовательно, ток коллектора увеличивается.

Аналогичные явления происходят в транзисторе типа p-n-p, надо только местами поменять электроны и дырки, а также полярность источников E1 и E2.

Помимо рассмотренных процессов существует еще ряд явлений. При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение заряда, обусловленное в основном ударной ионизацией. Это явление и туннельный эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой пробой. Все происходит также, как у диодов, но в транзисторе при чрезмерном коллекторном токе тепловой пробой может наступить без предварительного электрического пробоя, т. е. тепловой пробой может наступить без повышения коллекторного напряжения до пробивного.

При изменении напряжений на коллекторном и эмиттерном переходах изменяется их толщина, в результате чего изменяется толщина базы. Это явление называется модуляцией толщины базы. Особенно важно учитывать напряжение коллектор-база, поскольку при этом толщина коллектора возрастает, толщина базы уменьшается. При очень тонкой базе может возникнуть эффект смыкания (так называемый "прокол" базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает и транзистор перестает нормально работать.

При увеличении инжекции носителей из эмиттера в базу происходит накопление неосновных носителей заряда в базе, т. е. увеличение концентрации и суммарного заряда этих носителей. А вот при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда этих самых носителей в базе и сей процесс обозвали рассасыванием неосновных носителей зарядов в базе.

И на последок одно правило: при эксплуатации транзисторов запрещается разрывать цепь базы, если не включено питание цепи коллектора. Надо также включать питание цепи базы, а потом цепи коллектора, но не наоборот.

7

Электронные элементы ЭВМ. Полевой транзистор с управляющим P-N переходом.

Классификация полевых транзисторов

По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).

Транзисторы с управляющим p-n переходом

Рис. 1. Устройство полевого транзистора с управляющим p-n переходом

Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого отделен в электрическом отношении от канала p-n переходом, смещенным в обратном направлении.

Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещенных в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебании как по мощности, так и по току и напряжению.

Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах .

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделен от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.

8

Электронные элементы ЭВМ. МОП транзистор с индуцированным каналом.

Транзисторы с изолированным затвором (МДП-транзисторы)

Рис. 2. Устройство полевого транзистора с изолированным затвором.

Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом

При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

9

Электронные элементы ЭВМ. МОП транзистор с встроенным каналом.

МДП-транзисторы со встроенным каналом

Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом.

В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

МДП - транзисторах со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (UЗИ.отс ). МДП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

10

Электронные элементы ЭВМ. Динамическая х-ка усилителя.

11

Электронные элементы ЭВМ. Транзисторные ключи.

Транзисторные ключи служат для коммутации цепей нагрузки под воздействием внешних управляющих сигналов. В соответствии с функциями ключа транзистор может находиться в одном из двух ста­тических режимов:

· режим отсечки (транзистор закрыт) и

· режим насыщения (транзистор открыт и насыщен).

1. Общие сведения об электронных ключах

К люч - элемент, который под воздействием управляющего сигнала производит различные коммутации (источников питания, активных элементов и т.д.). Электронный ключ является основой для построения более сложных цифровых устройств. При включении активного элемента с общим эмиттером (истоком) ключ выполняет логическую операцию НЕ, т.е. инвертирует входной сигнал.

Ключ имеет два состояния: замкнутое и разомкнутое.

Рис. 4

Для реализации ключей используют диоды, биполярные и полевые транзисторы.

Время переключения ключей на биполярных транзисторах определяется барьерными емкостями p-n-переходов и действиями скопления и рассасывания неосновных носителей заряда в базе. Для повышения быстродействия и входного сопротивления используют ключи на полевых транзисторах.

2. Схемы электронных ключей на полевых транзисторах

Транзисторный ключ является основным элементом устройств цифровой электроники. Основные особенности транзисторного ключа является обязательным условием понимания принципов работы цифровых устройств.

Схемы ключей на полевых транзисторах с управляющим p-n-переходом и с индуцированным каналом с общим истоком и общим стоком показаны на рисунке:

Р ис. 5

Для любого ключа на полевом транзисторе Rн > 10-100 кОм.

Управляющий сигнал Uвх на затворе порядка 10-15 В. Сопротивление полевого транзистора в закрытом состоянии велико, порядка 108-109 Ом.

Сопротивление полевого транзистора в открытом состоянии может составлять 7-30 Ом. Сопротивление полевого транзистора по цепи управления может составлять 108-109 Ом. (схемы "а" и "б") и 1012-1014 Ом (схемы "в" и "г").

1 поколение - с линейной нагрузкой.

2 поколение - с нелинейной нагрузкой. В качестве нагрузки (вместо) ставили второй полевой транзистор одинакового типа проводимости.

Рис. 6 Транзисторный ключ на полевом транзисторе с линейной нагрузкой.

3. Принцип действия электронных ключей

Электронные ключи основаны на работе биполярных транзисторов. Когда на базе транзистора «0» относительно эмиттера, транзистор «закрыт», ток через него не идёт, на коллекторе всё напряжение питания (сигнал высокого уровня -- «1»). Когда на базе транзистора «1», он «открыт», возникает ток коллектор -- эмиттер и падение напряжения на сопротивлении коллектора, напряжение на коллекторе, а с ним и напряжение на выходе, уменьшается до низкого уровня «0».

В статическом режиме ключ находится в состоянии «включено» (ключ замкнут), либо в состоянии «выключено» (ключ разомкнут). Переключение ключа из одного состояния в другое происходит под воздействием входных управляющих сигналов : импульсов или уровней напряжения. Простейшие ключевые схемы имеют один управляющий вход и один выход.

Основу ключа составляет транзистор в дискретном или интегральном исполнении.

В зависимости от состояния ключ шунтирует внешнюю нагрузку большим или малым выходным сопротивлением. В этом и заключается коммутация цепи, производимая транзисторным ключом.

Основными параметрами ключа являются :

* быстродействие, определяемое максимально возможным числом переключений в секунду ; для интегральных ключевых схем оно составляет миллионы коммутаций ;

* длительность фронтов выходных сигналов ;

* внутренние сопротивления в открытом и закрытом состоянии ;

* потребляемая мощность ;

* помехоустойчивость, равная уровню помехи на входе, вызывающей ложное переключение ;

* стабильность пороговых уровней, при которых происходит переключение ;

* надежность работы в реальных условиях старения радиодеталей, изменения источников питания и т.д.