Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Морфология 82-98.docx
Скачиваний:
1
Добавлен:
05.08.2019
Размер:
121.15 Кб
Скачать

89. Строение мышцы. Мышца как орган.

Мышца состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium) в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т. д. В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой — perimysium, составляя мышечное брюшко. Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы

Так как сокращение мышцы вызывается импульсом, идущим от центральной нервной системы, то каждая мышца связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по И. П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом. В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы. В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

В мышце различают активно сокращающуюся часть — брюшко и пассивную часть, при помощи которой она прикрепляется к костям, — сухожилие. Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, резко отличающийся от красно-бурого цвета брюшка мышцы. В большинстве случаев сухожилие находится по обоим концам мышцы. Когда же оно очень короткое, то кажется, что мышца начинается от кости или прикрепляется к ней непосредственно брюшком. Сухожилие, в котором обмен веществ меньше, снабжается сосудами беднее брюшка мышцы. Таким образом, скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (perimysium, сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мускула как органа сокращения. Каждая мышца является отдельным органом, т. е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме.

90. Строение молочной железы

Чтобы ответить на вопрос, как образуется молоко, необходимо познакомиться с тем, как устроено, как растет и развивается вымя у коровы.

Молочные железы имеются у млекопитающих животных обоих полов, но у самцов они остаются недоразвитыми, а у самки растут и развиваются, потому что тесно связаны с ее органами размножения, с половыми железами. По мере созревания половых желез- яичников - растут и молочные железы

Будучи кожными образованиями, молочные железы родственны потовым железам. Недаром ученые находят тесную связь между молочностью коров и количеством потовых желез в коже.

В мире млекопитающих можно встретить животных с весьма просто устроенными молочными железами.

У австралийского яйцекладущего животного утконоса молочные железы представлены несколькими десятками трубчатых железок по,обеим сторонам от так называемой белой линии живота. Каждая трубочка заканчивается выводным протоком, напоминающим проток потовой железы. Из протока выделяется секрет, только отдаленно напоминающий молоко. Он стекает с волос на брюшке матери, и детеныши слизывают его. Соски у утконоса отсутствуют.

У сумчатых животных (например, у австралийского кенгуру) в молочных железах нет цистерн, но имеются соски, через которые детенышу, находясь в сумке на брюхе матери, высасывают молоко

Поиному устроена молочная железа коровы. Вымя у нее образуется из слияния трех пар желез, но нормально развиты бывают только две передние пары. Третья так и остается недоразвитой. Пятый и шестой соски у коров встречаются довольно часто, и из них иногда удается извлечь немного молока.

Вымя коровы одето мягкой и весьма эластичной, растяжимой кожей, покрытой редкими волосами. Чем продуктивнее корова, тем тоньше на ее вымени кожа. В молочной железе может накапливаться между доениями значительное количество молока, и объем ее увеличивается примерно на одну греть по сравнению с первоначальной величиной. Более половины удоя размещается в вымени благодаря его растяжению.

В вымени различают: железистую ткань, состоящую из мельчайших пузырьков - альвеол, видимых только под микроскопом; молочные протоки, по которым молоко проходит в молочные цистерны; кровеносные и лимфатические сосуды; нервные волокна.

Строение вымени можно видеть и невооруженным глазом. На разрезе заметна соединительная ткань в виде белых пластинок, окружающих железистую часть, окрашенную в оранжево-розовый цвет. Здесь находятся альвеолы и разного диаметра протоки.

В вымени коровы четыре доли (четверти) -две передние и две задние (рис. 3). Если ввести через соски окрашенную жидкость, то можно убедиться в том, чтодоли не соединяются между собой протоками (рис. 4). Это позволяет выдаивать каждую из них отдельно. При некоторых заболеваниях вымени, например мастите, обычно поражается какая-либо одна доля. Что вымя состоит из четырех обособленных долей, видно также из того, что полностью выдоить корову можно только через все четыре соска.

Правая и левая половины вымени отделены друг от друга подкожной эластичной перегородкой из соединительной ткани, которая одновременно служит связкой, поддерживающей вымя. С возрастом коровы эта связка ослабевает и вымя несколько отвисает (рис. 5). Такие же эластичные перегородки разделяют молочную железу на отдельные дольки.

Альвеол в каждой доле вымени огромное количество. Внутренняя поверхность их составляет несколько квадратных метров (рис. 6). Альвеолы выстланы секреторными клетками. В крупных альвеолах до сотни таких клеток. В них и образуется молоко. Задние четверти молочной железы имеют больше альвеол, чем передние, и поэтому вырабатывают больше молока.

Образовавшееся в секреторных клетках молоко переходит в полость альвеол, а отсюда сначала в узкие, а затем в более широкие протоки, по которым стекает в молочные цистерны.

Молоко из альвеол не может выйти самотеком. Оно поступает только во время доения, но об этом мы расскажем дальше.

Соответственно четырем соскам в вымени имеется четыре пазухи (цистерны). В каждую из них и открываются от 12 до 50 широких протоков. Нижний отдел называется сосковой цистерной (рис. 7). Цистерны и протоки представляют собой единую систему с одинаковым давлением. Цистерны вмещают 600 миллилитров молока и более. Впрочем, у разных животных и в разных четвертях этот объем далеко не одинаков. Примерно 40 процентов удоя заключено в цистернах и протоках, остальное - в альвеолах. В передних четвертях цистерны обычно расположены на боковой стороне, а в задних-на задней стороне вымени. Это полезно учитывать при массаже вымени и выдаивании молока.

Полости альвеол, молочных протоков и цистерн составляют определенную емкость вымени.

Сосковая цистерна переходит внизу в узкий и короткий выводной канал. Во время доения он укорачивается, а сосковая цистерна расширяется. Выводной канал имеет круглый запирательный мускул - сфинктер (рис. 8). От состояния сфинктера, его тонуса (напряжения) зависит тугодойкость коровы. Выводной канал и его запирательный мускул также служат некоторым препятствием для проникновения в сосок бактерий.

Кожа на сосках молочной железы коровы состоит из многих слоев клеток. Они плотно прилегают к мышцам. Кожа на сосках лишена волос и не имеет сальных и потовых желез, поэтому при плохом уходе за выменем, особенно в летние ветреные дни, на сосках могут появиться трещины.

Чтобы получить более полное представление о том, как устроено вымя, следует обратить внимание еще на одно обстоятельство.

Альвеолы и тонкие молочные протоки снаружи выстланы особыми клетками (рис. 6). Их особенность заключается в том, что они имеют звездчатую форму и способны сокращаться. Соединяясь своими отростками, звездчатые клетки образуют вокруг альвеол нечто вроде сетки. Пока альвеола заполняется молоком, звездчатые клетки растягиваются, но во время доения сокращаются и выжимают молоко в протоки. Звездчатые клетки, расположенные вдоль тонких протоков, сокращаясь, открывают эти канальцы и способствуют продвижению молока по направлению к цистернам.

Если забить лактирующую корову, а затем удалить вымя и сделать поперечный или продольный разрез его, то мы с удивлением отметим, что в нем, за исключением небольших цистерн, в сущности нет видимых полостей. А между тем вымя коровы обладает значительной емкостью. Огромное количество альвеол, узких и широких протоков, цистерны в состоянии вместить большое количество молока-15 литров и более. Такое количество молока удерживается в вымени и не вытекает наружу благодаря наличию запирательного мускула в сосках и особому устройству протоков, по которым молоко стекает в цистерну.

В чем же заключается эта особенность? Вымя можно сравнить с губкой, которая удерживает в себе воду благодаря множеству узких трубочек, пронизывающих тело губки в разных направлениях. Чтобы выжать воду из губки, требуется приложить определенное усилие. Это же относится и к молочной железе, из которой удается извлечь молоко только после сжатия альвеол.

Молочные протоки состоят из расширений, чередующихся с сужениями в тех местах, где они прокладывают себе путь через перегородки соединительной ткани между дольками вымени (рис. 9). К тому же протоки в молочной железе соединяются друг с другом под разными углами. Уже одно это обстоятельство могло бы объяснить, почему вымя в состоянии удержать относительно большое количество молока. Некоторые ученые, кроме того, считают, что в устьях молочных протоков имеются утолщения из гладкой мышечной ткани, наподобие сфинктеров в сосках.

Наконец, следует иметь в виду, что по мере накопления молока каналы в вымени способны расслабляться и размещать образующееся молоко.

91. Обмен липидов регулируется ЦНС. Кора большого мозга оказывает трофическое влияние на жировую ткань либо через нижележащие отделы ЦНС – симпатическую и парасимпатическую системы, либо через эндокринные железы. В настоящее время установлен ряд биохимических механизмов, лежащих в основе действия гормонов на липидный обмен.

Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая – нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием кате-холаминов.

Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лаг-фазы продолжительностью около 1 ч, тогда как адреналин стимулирует липолиз почти мгновенно. Иными словами, можно считать, что первичное действие этих двух типов гормонов на липолиз проявляется различными путями. Адреналин стимулирует активность аденилатциклазы, а СТГ индуцирует синтез данного фермента. Конкретный механизм, с помощью которого СТГ избирательно увеличивает синтез аденилатциклазы, пока неизвестен.

Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. Недавно было показано, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани. Фосфодиэстераза играет важную роль в поддержании постоянного уровня цАМФ в тканях, поэтому увеличение содержания инсулина должно повышать активность фосфодиэстеразы, что в свою очередь приводит к уменьшению концентрации цАМФ в клетке, а следовательно, и к образованию активной формы липазы.

Несомненно, и другие гормоны, в частности тироксин, половые гормоны, также оказывают влияние на липидный обмен. Например, известно, что удаление половых желез (кастрация) вызывает у животных избыточное отложение жира. Однако сведения, которыми мы располагаем, не дают пока основания с уверенностью говорить о конкретном механизме их действия на обмен липидов. В табл. 11.2 приведены сводные данные о влиянии ряда факторов на мобилизацию жирных кислот из жировых депо.

92. Орган слуха воспринимает колебания воздушной среды. У человека и высших позвоночных животных этот орган обособлен от других органов чувств. Органы слуха связаны во всем животном мире с органами сохранения равновесия, которые участвуют в поддержании определенной позы тела. Утратившие ощущение равновесия животное, начав двигаться, тотчас же перевернулось бы на спину или на бок. Рецепторные аппараты - слуховой и вестибулярный - расположены во внутреннем ухе. В филогенезе они имеют общее происхождение. Оба рецепторных аппарата иннервируются волокнами 8 пары черепных мозговых нервов. Оба возбуждаются механическими колебаниями: вестибулярный аппарат воспринимает угловые ускорения, слуховой - воздушные колебания. Орган слух является частью системы, обеспечивающей способность к членораздельной речи. Слуховые восприятия в процессе развития человека настолько тесно связываются с речью, что ребенок, потерявший слух в раннем детстве, утрачивает и речевую способность, хотя весь артикуляционный аппарат у него остается ненарушенным.

Слуховые рецепторы находятся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания передаются к ним через целую систему вспомогательных образований, обеспечивающих совершенное восприятие звуковых раздражений. Орган слуха человека состоит из трех частей - наружного, среднего и внутреннего уха.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков. Ушная раковина образована эластическим хрящом, снаружи покрытым кожей. Внизу ушная раковина дополнена кожной складкой - мочкой, которая заполнена жировой тканью. У животных раковина подвижна, что дает возможность им улавливать направление звука. У человека ушные мышцы слабо развиты и ушная раковина почти неподвижна. Определение направления звука у человека связано с так называемым бинауральным слухом, т.е. со слышанием двумя ушами. Всякий звук, идущий сбоку, поступает в одно ухо раньше на несколько долей миллисекунды, чем в другое (в зависимости от местоположения источника звука). Разница во времени прихода звуковых волн, воспринимаемых левым и правым ухом, дает возможность человеку определить направление звука. Если у человека одно ухо поражено и не функционирует, то он определяет направление звука вращением головы. Наружный слуховой проход у взрослого человека имеет длину 2,5 см, емкость 1 см куб. Слуховой проход выстлан тонкой кожей с тонкими волосками и видоизмененными потовыми железами, вырабатывающими ушную серу. Ушная сера состоит из жировых клеток, содержащих пигмент. Волоски и ушная сера выполняет защитную роль. На границе между наружным и средним ухом находится барабанная перепонка. Это тонкая соединительнотканная пластинка (ее толщина около 0,1 мм), которая снаружи покрыта эпителием, а изнутри слизистой оболочкой. Барабанная перепонка расположена наклонно и начинает колебаться, когда на нее падают со стороны наружного слухового прохода звуковые колебания. И так как барабанная перепонка не имеет собственного периода колебаний, то она колеблется при всяком звуке соответственно его длине волны.

Среднее ухо представлено барабанной полостью, имеющей неправильную форму в виде маленького плоского барабана, на который туго натянута колеблющаяся перепонка, и слуховой трубой. Внутри полости среднего уха расположены сочленяющиеся между собой слуховые косточки - молоточек, наковальня и стремечко. Внутреннее ухо отделено от среднего перепонкой овального окна. Рукоятка молоточка вплетена в барабанную перепонку; другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно соединена со стремечком. К стремечку прикреплена стременная мышца, удерживающая его у перепонки овального окна преддверия. Система слуховых косточек обеспечивает увеличение давления звуковой волны при передаче с барабанной перепонки на перепонку овального окна примерно в 30-40 раз. Это очень важно, так как даже слабые звуковые волны, падающие на барабанную перепонку, в результате оказывается способными преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо, трансформируясь там в колебания жидкости - эндолимфы. Барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см и очень узкой (2 мм). Труба поддерживает одинаковое давление снаружи и изнутри -на барабанную перепонку, что создает наиболее благоприятные условия для ее колебания. Отверстие трубы в глотке обычно находится в спавшемся состоянии, и проход воздуха в барабанную полость происходит во время акта глотания и зевания, когда открывается просвет трубы и давление в глотке и барабанной полости выравнивается.

Внутреннее ухо расположено в каменистой части височной кости и представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Перепончатый лабиринт как бы вставлен в костный лабиринт и в общем повторяет его форму. Между костным и перепончатым лабиринтами имеется жидкость - перилимфа, а внутри перепончатого лабиринта - эндолимфа. В стенке, отделяющей среднее ухо от внутреннего, кроме овального окошка, имеется еще круглое окно, которое делает возможным колебание жидкости. Костный лабиринт состоит из трех частей: в центре - преддверие, спереди от него находится улитка, а сзади - полукружные каналы. Костная улитка - спирально извивающийся канал, образующий два с половиной оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки 0,04 мм, а на вершине 0,5. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части, или лестницы. Внутри среднего канала улитки, в улитковом ходе. Находится звуковоспринимающий аппарат - спиральный (кортиев) орган. Кортиев орган имеет базилярную (основную) пластинку, которая состоит примерно из 24000 тонких фиброзных волоконец различной длины, очень упругих и слабо связанных друг с другом. На основной пластинке вдоль нее в 5 рядов располагаются опорную и волосковые чувствительные клетки, которые является собственно слуховыми рецепторами.

Для слухового анализатора звук является адекватным раздражителем. Звуковые волны возникают как чередование сгущений и разрежений воздуха, которые распространяются во все стороны от источника звука. Все вибрации воздуха, воды или другой упругой среды распадаются на периодические (тоны) и непериодические (шумы). Если их записать, то тоны имеют правильную, четкую, ритмическую форму, шумы - неправильную, сложную. Тоны бывают высокие и низкие. Последним соответствует меньшее число колебаний в секунду. Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенное число колебаний в секунду. Длину звуковой волны определяют расстоянием, которое проходит звук в секунду, деленным на число полных колебаний, которое совершает звучащее тело в секунду. Чем больше число колебаний, тем короче длина волны. У высоких звуков волна короткая, измеряемая в миллиметрах; у низких - длинная, измеряемая метрами. Самый высокий звук, который мы в состоянии услышать, имеет 20000 колебаний в секунду; самый низкий - 12-24 Гц. У многих животных верхняя граница слуха выше, чем у человека. Для человека звуки в 50-100 тыс. колебаний в секунду неслышимы - это ультразвуки. С помощью физических приборов человек может вызывать и регистрировать ультразвуки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]