Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен КСЕ.docx
Скачиваний:
22
Добавлен:
02.08.2019
Размер:
128.95 Кб
Скачать
  1. Законы Ньютона.

Ньютон сформулировал три закона динамики, со­ставляющие основной раздел классической механики. Законы Ньютона играют исключительную роль в механике и являются (как и большинство физических законов) обобщением результа­тов огромного человеческого опыта.

Первый закон Ньютона: всякая материальная точка (тело) со­храняет состояние покоя или равномерного прямолинейного движе­ния до тех пор, пока воздействие со стороны других тел не заста­вит ее изменить это состояние.

Стремление тела сохранить состояние покоя или равномер­ного прямолинейного движения называется инертностью, или инерцией. Поэтому первый закон Ньютона называют также зако­ном инерции.

Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела): а=F/m

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Взаимодействие между материальными точками (телами) оп­ределяется Третьим закономНьютона: всякое действие матери­альных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки: F12=-F21 ,где F12 — сила, действующая на первую материальную точку со стороны второй; F21— сила, действующая на вторую материаль­ную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и явля­ются силами одной природы.

  1. Законы термодинамики.

Известно, что в процессе превращения энергии выполняется закон сохранения энергии. Поскольку тепловое движение тоже механическое, то при всех превращениях должен выполняться закон сохранения энергии не только внешних, но и внутренних движений. В этом заключается качественная формулировка закона сохранения энергии для термодинамической системы – первое начало термодинамики. Количественная его формулировка: количество теплоты rQ, сообщенное телу, идет на увеличение его внутренней энергии rU и на совершение теплом работы rА, т.е. rQ,= rU + rА. Q – теплота полученная макросистемой от других систем. rU – изменение внутренней энергии макросистемы. А – работа, которую совершила макросистема над другими системами.

Из первого начала термодинамики следует важный вывод: невозможен вечный двигатель первого рода, т.е. такой двигатель, который совершал бы работу «из ничего», без внешнего источника энергии.

Термодинамические процессы необратимы.

С помощью тел, находящихся в термодинамическом равновесии, невозможно совершить никакой работы, так работа связана с механическим движением, т.е. с переходом тепловой энергии в кинетическую.

Утверждение о невозможности получения работы за счет энергии тел, находящихся в термодинамическом равновесии, составляет сущность второго начала термодинамики: Тепло не может переходить от менее нагретого тела к более нагретому. Тепло передается в одном направлении. Тепловые процессы всегда стремятся к равновесию.

Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного со­стояния в неравновесное не невозможен, а лишь подавляюще маловероятен.

Закон, определяющий направление тепловых процессов, можно сформулировать как закон возрастания энтропии: для всех происходящих в замкнутой системе тепловых процес­сов энтропия системы возрастает, максимально возможное значе­ние энтропии замкнутой системы достигается в тепловом равно­весии.