Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен КСЕ.docx
Скачиваний:
22
Добавлен:
02.08.2019
Размер:
128.95 Кб
Скачать
  1. Дискретность и непрерывность материи.

Строение материи интересует естествоиспытателей с античных времен. Так, в Древней Греции обсуждались две гипотезы строения материальных тел. Одна из них – ее предложил Аристотель – заключается в том, что вещество делиться на более мелкие частицы и нет предела его делимости. По существу, эта гипотеза означает непрерывность вещества. Другая гипотеза выдвинута Левклиппом и развита его учеником Демокритом, а затем его последователем Эпикуром. В ней предполагается, что вещество состоит из мельчайщих цастиц – атомов (концепция атомизма).

Атомы – это неделимые, вечные, неразрушимые элементы материи. В то время объяснение многих химических реакций не нуждались в понятии атома. Для них, как и для количественного описания движения частиц, вводилось другое понятие – молекула. Молекула – это наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями.

Неделимость атома как составной части молекулы долгое время не вызывала сомнений. Однако к началу XX в. физические опыты показали, что атомы состоят из более мелких частиц. Так, в 1897 г. Томсон открыл электрон – составную часть атома.

Атомы химических элементов очень малы, они имеют сложную структуру и состоят из ядер и электронов. В результате дальнейших исследований выяснилось, что и ядра атомов состоят из протонов и нейтронов, т.е. имеют дискретное строение. Это означает, что концепция атомизма для ядер характеризует структуру материи на ее нуклонном уровне.

В настоящее время принято считать, что не только вещество, но и другие виды материи – физическое поле и вакуум – имеют дискретную структуру.

Основной вид материи – вещество, находящееся в твердом и жидком состояниях - воспринимается обычно как непрерывная, сплошная среда. Для анализа и описания свойств такого вещества в большинстве случаев учитывается только его непрерывность. Однако то же вещество при объяснении тепловых явлений, химических связей рассматривается как дискретная среда, состоящая из взаимодействующих между собой атомов и молекул.

Для одних и тех же видов материи характерны и непрерывность, и дискретность. Для классического описания природных явлений и свойств материальных объектов достаточно учитывать непрерывные свойства материи, а для характеристики различных микропроцессов – ее дискретные свойства. Непрерывность и дискретность – неотъемлемые свойства материи.

  1. Фундаментальные взаимодействия

Гравитация первым из четырех фундаментальных взаимодейст­вий стала предметом научного исследования. Созданная в ХVII в. ньютоновская теория гравитации (закон всемирного тяготения) по­зволила впервые осознать истинную роль гравитации как силы при­роды. Наиболее удивительной осо­бенностью гравитации является ее малая интенcивность. Вторая удивительная черта гравитации - ее универ­сальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. Никакие квантовые эффекты в гравитации пока не доступны наблюдению. Кроме того, интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике. Сила гравитации, действующая между частицами, всегда пред­ставляет собой силу притяжения: она стремится сблизить частицы.

По величине электрические силы намного превосходят гравитаци­онные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных разме­ров, можно легко наблюдать. Существование электрона (единицы электрического заряда) было твердо установлено в 90-е гг. XIX в. Но не все материальные частицы являются носителями электрического заряда. Электричес­ки нейтральны, например, фотон и нейтрино. В этом электричество и отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заря­женные частицы. Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные - притягиваются. В отличие от электрических заря­дов магнитные полюсы встречаются не по отдельности, а только парами - северный полюс и южный. Электрическая и магнитная силы (как и гравитация) являются дальнодействующими, их действие ощутимо на больших расстояни­ях от источника. Электромагнитное поле Земли простирается далеко в космичес­кое пространство; мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. Электромагнитное взаимодействие определяет также структуру ато­мов и отвечает за подавляющее большинство физических и химичес­ких явлений и процессов .

К выявлению существования слабого взаимодействия физика про­двигалась медленно. Слабое взаимодействие ответственно за распа­ды частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада. У бета-распада обнаружилась в высшей степени странная особен­ность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики — закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обла­дает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино». Дальнейшие исследования показали, что вхо­дящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабо­го взаимодействия очень мал. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Последнее в ряду фундаментальных взаимодействий - сильное взаи­модействие, которое является источником огромной энергии. Наи­более характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно про­текают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции. К представлению о существовании сильного взаимодействия фи­зика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического оттал­кивания. Выясни­лось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испы­тывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно толь­ко тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Таким образом, в фундаментальных физических взаимодействи­ях четко прослеживается различие сил дальнодействующих и близко­действующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое).