Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы электротехника.doc
Скачиваний:
4
Добавлен:
02.08.2019
Размер:
1.97 Mб
Скачать

11 Регулирование частоты вращения

Для получения наибольшей производительности, точности обработки или иных показателей исполнительный орган производственного механизма должен вращаться или перемещаться поступательно с соответствующей этому оптимальному режиму скоростью. В связи с этим возникает необходимость принудительного регулирования скорости исполнительного органа в соответствии с технологическими требованиями. В недалеком прошлом регулирование скорости осуществлялось с помощью коробок скоростей, механических вариаторов  и т. п.

Перечисленные способы имеют ряд существенных недостатков, одним из которых является усложнение кинематики механизма, другим — ступенчатое регулирование и т.п. По этой причине в настоящее время стали широко использовать регулировочные свойства двигателя — регулирование скорости механизма путем изменения частоты вращения двигателя, что привело к значительному упрощению кинематики устройства и управления, удешевлению механизма, осуществлению плавного регулирования скорости.

Рассмотрим вначале возможные способы регулирования частоты вращения ротора асинхронного двигателя с короткозамкнутым ротором. Как известно, частота вращения ротора в нормальном режиме работы несколько меньше (на 2 — 8%) частоты вращения магнитного поля. Поэтому изменение частоты вращения магнитного поля вызывает изменение в той же степени и частоты вращения ротора двигателя.

Из выражения частоты вращения магнитного поля

n0 = 60f1/р

вытекают два наиболее распространенных способа регулирования частоты вращения 1) изменением числа пар полюсов р; 2) изменением частоты f1 напряжения источника

Регулирование изменением числа пар полюсов осуществляется изменением схемы соединения обмотки статора с помощью переключателя. Обмотка каждой фазы двухскоростного асинхронного двигателя состоит из нескольких частей, которые соединяются между собой параллельно или последовательно. В результате образуются разные числа пар полюсов. На рис 10.25, а изображена обмотка одной фазы статора, имеющая две части, которые соединены между собой параллельно, на рис   10.25, б — последовательно.

Рассмотрев картины магнитного поля, созданного током обмотки одной фазы статора для какого-то момента времени, легко убедиться, что на рис. 10.25, а обмотка образует р = 1, а на рис. 10.25, б - р = 2 пар полюсов. Обмотки статора двух других фаз, сдвинутые в пространстве на электрический угол в 120°, соединяются так же, как и первая. Результирующее магнитное поле, естественно, будет иметь столько же пар полюсов, сколько и поле, созданное одной фазой обмотки. Необходимо заметить, что никаких переключений обмотки ротора не производится: ток обмотки ротора всегда образует столько пар полюсов, сколько их создано обмоткой статора. Рассмотренный способ дает возможность получить только две скорости, отличающиеся по значению в 2 раза, что является его существенным недостатком.

Отечественная промышленность выпускает двухскоростные асинхронные двигатели со следующими частотами вращения магнитных полей: 3000/1500; 1500/750; 1000/500 об/мин и др. Механические характеристики двухскоростного двигателя изображены на рис. 10.26. Значения максимальных моментов будут равными (рис. 10.26, а), если равны магнитные потоки двигателя для первого и второго способов соединения обмоток, в противном случае (рис. 10.26, б) они не равны. Как следует из выражения

U1ф ≈ E1ф = 4,44w1fk01,

магнитные потоки будут равными, если остается неизменным отношение U1ф/f1 для первой и второй схем соединения обмоток.

Трехскоростные и четырехскоростные двигатели имеют по две независимые обмотки статора, одна из которых образует две скорости,  а   другая   в   трехскоростном   двигателе — одну, в четырехскоростном двигателе — две скорости. Могут быть двигатели со следующими частотами вращения n0: трехскоростные - 1500/1000/750, 1000/750/500 об/мин; четырехскоростные - 3000/1500/1000/500, 1500/1000/750/500 об/мин.

Для регулирования частоты вращения ротора изменением частоты тока статора необходимо иметь отдельный источник или преобразователь энергии с регулируемой частотой. До последнего времени в качестве источника энергии использовались синхронные, асинхронные или индукционные генераторы. При этом установка (рис. 10.27, а) состояла из нескольких машин: приводного асинхронного или синхронного двигателя 1, работающего с постоянной частотой вращения синхронного генератора 2, механического или электрического регулятора скорости 3, асинхронного двигателя 4 и исполнительного механизма 5. Частота f1 напряжения в обмотке статора синхронного генератора равна

f1 = рn/60.

При изменении частоты вращения синхронного генератора изменяется частота f1 и, следовательно, частота вращения ротора асинхронного короткозамкнутого двигателя 4 и исполнительного механизма 5. На рис. 10.28 изображены механические характеристики асинхронного двигателя при частотном регулировании скорости. Предполагается, что с изменением частоты в такой же степени изменяется и напряжение, а их отношение U1ф/f1 остается постоянным. Такой способ позволяет получить широкий диапазон и плавное регулирование частоты вращения, однако он имеет плохие технико-экономические показатели: низкий КПД, большие капитальные вложения и т. п., поэтому применяется редко.

В настоящее время разработаны статические преобразователи частоты на тиристорах, обладающих высокими технико-экономическими показателями. Структурная схема такой установки изображена на рис. 10.27, б. Здесь 1 — статический преобразователь, 2 — асинхронный двигатель, 3 — исполнительный механизм.

Существуют также другие, мало распространенные способы регулирования частоты вращения короткозамкнутого двигателя, например изменением напряжения на обмотке статора. В качестве регулятора используется индуктивное регулируемое сопротивление, включенное в цепь обмотки статора (например, силовой магнитный усилитель

12 Регулирование частоты вращения ротора асинхронного двигателя с фазным ротором

Регулирование частоты вращения ротора асинхронного двигателя с фазным ротором в большинстве случаев осуществляется путем введения в цепь обмотки ротора дополнительного сопротивления (см. рис. 10.23).

Как следует из (10.55) и (10.56), добавочное сопротивление в цепи обмотки ротора увеличивает критическое скольжение sкр и не влияет на значение максимального момента Mmax . Искус­ственные (реостатные) характеристики двигателя рассчитывают с помощью уравнения (10.62).

На рис. 10.29 сплошными линиями изображены естественные и искусственные механические характеристики асинхронного двигателя для различных значений добавочных сопротивлений в цепи обмотки ротора. Из кривых следует, что при заданном моменте на валу Мс частота вращения ротора на каждой механической характеристике будет разной (п1, n2, n3).

Для выбора регулировочного и пускового реостатов по нагреву необходимо знать значения токов в роторной цепи двигателя. Для определения тока используют тот факт, что ток ротора определяется моментом двигателя и не зависит от значения добавочного сопротивления в цепи обмотки ротора. Например, моменту Мс (рис. 10.29) на естественной и искусственной характеристиках соответствует один и тот же ток I2с. Это положение можно доказать аналитически.

Момент, развиваемый двигателем, равен:

на естественной характеристике

M =

3I22r2

,

ω0s

на искусственной характеристике

Mи =

3I2и2(r2 + rд)

.

ω0sи

Допустим, что М = Ми = Мс . Тогда

3I22r2

=

3I2и2(r2 + rд)

,

ω0s

ω0sи

или

I22

=

s

 

(r2 + rд)

,

I2и2

sи

r2

Выразив s/sи через сопротивления цепи ротора, получим

I22

=

r2(r2 + rд)

= 1.

I2и2

(r2 + rд)r2

К недостаткам реостатного способа регулирования частоты вращения относятся значительные потери энергии в регулировочном реостате, малая жесткость механических характеристик: небольшое изменение момента на валу вызывает значительное изменение частоты вращения, а также невозможность получения плавного регулирования. Рассмотренный способ используется в системах, где работа на реостатных характеристиках непродолжительна

13 Принцип действия генератора.

Если обмотку возбуждения генератора подключить к источнику постоянного тока, то МДС обмотки будет создано основное магнитное поле, характеризуемое магнитным потоком Ф0 и показанное на рис. 11.1, а с помощью двух линий магнитной индукции, изображенных пунктиром. При вращении ротора с помощью первичного двигателя магнитное поле будет также вращаться.

Так как катушки фаз обмотки якоря имеют одинаковые числа витков и смещены в пространстве относительно друг друга на 120°, то при вращении магнитного поля в трех фазах будут индуктироваться три ЭДС, одинаковые по амплитуде и частоте, сдвинутые по фазе относительно друг друга также на угол 120°. Чтобы при постоянной частоте вращения ЭДС изменялись по закону, близкому к синусоидальному, магнитная индукция вдоль воздушного зазора, разделяющего магнитопроводы статора и ротора, должна быть распределена также примерно по синусоидальному закону. В машинах с явновыраженными полюсами это достигается за счет неодинакового воздушного зазора между сердечником статора и полюсными наконечниками 4 (см. рис. 11.1, б), в машинах с неявновыраженными полюсами — за счет соответствующего распределения обмотки возбуждения по пазам сердечника статора.

Векторная диаграмма ЭДС генератора дана на рис.  11.2. Действующее значение и частота синусоидальной ЭДС, ин­дуктируемой в фазе обмотки якоря, могут быть определены, как и в асинхронном двигателе, по формулам(11,1)

Е0 = 4,44kwfФ0;(11,2)

f = рn/60.

Для получения стандартной частоты 50 Гц при различных частотах вращения синхронные генераторы изготовляются с разными числами пар полюсов. Так, турбогенераторы изготовляются в большинстве случаев на частоту вращения 3000 об/мин и имеют одну пару полюсов (р = 1). Изготовление турбогенераторов на наименьшее число пар полюсов и соответственно на наибольшую частоту вращения позволяет уменьшить габаритные размеры, массу и стоимость генераторов. Частота вращения гидрогенераторов определяется в основном высотой напора воды и для различных станций лежит в пределах от 50 до 750 об/мин, что соответствует числам пар  полюсов  от 60 до 4.Если к обмотке якоря подключить приемник электрической энергии, то под действием ЭДС в фазах обмотки якоря и приемника появятся токи; генератор начнет отдавать приемнику электрическую энергию.При работе генератора с нагрузкой МДС трехфазной обмотки якоря возбуждается вращающееся магнитное поле якоря, характеризуемое магнитным потоком Фя , частота вращения которого равна частоте вращения ротора, т. е. n0 = n = 60f/р; взаимное расположение осей магнитных полей якоря и ротора при данной нагрузке генератора остается неизменным. Под действием поля якоря результирующее поле генератора при изменении его нагрузки будет также изменяться, что оказывает влияние в конечном итоге на значение напряжения генератора. Воздействие поля якоря на результирующее поле машины называется реакцией якоря.В результате взаимодействия магнитного потока Фя и проводников обмотки возбуждения (или полюсов намагниченных сердечников якоря и ротора) на ротор действует электромагнитный момент, направленный у генератора против направления частоты  вращения   ротора   и   являющийся  тормозящим.

Значение электромагнитного момента, интенсивность и характер действия реакции якоря зависят кроме значения тока якоря от характера сопротивления приемников. Объясняется это тем, что при изменении характера сопротивлений приемников изменяется взаимное расположение осей магнитных потоков Фя и Ф0.

На рис. 11.3, а приведен эскиз упрощенной модели синхронной машины, на котором каждая фаза обмотки якоря заменена одним витком; ротор вращается с частотой вращения n под действием первичного двигателя; магнитное поле якоря изображено для случая, когда ток фазы ах имеет максимальное значение, вследствие чего ось КК' поля якоря Фя перпендикулярна плоскости катушки фазы ах; ось mm' магнитного поля ротора Ф0 совпадает с осью КК' поля якоря, что соответствует случаю, при котором ЭДС фазы ах отстает от тока этой фазы на угол 90°. Последнее возможно при чисто емкостной нагрузке генератора,   если   не   учитывать   активного   сопротивления   фазы   ах.Нетрудно установить, что несмотря на наличие тока якоря и магнитного потока Фя при чисто емкостной нагрузке электромагнитный момент генератора равен нулю, под действием поля якоря генератор подмагничивается.Можно показать, что и при чисто индуктивной нагрузке генератора электромагнитный момент будет также равен нулю. Только в этом случае полем якоря генератор будет размагничиваться.Если при тех же токах якоря нагрузка будет активно-емкостной, взаимное расположение осей магнитных потоков изменится: ось mm' магнитного потока ротора сместится на некоторый угол в направлении вращения ротора (рис. 11.3, б). Вследствие этого на ротор начнет действовать тормозящий электромагнитный момент Мэм , в чем легко убедиться с помощью правила левой руки (или рассмотрев взаимодействие полюсов намагниченных сердечников якоря и ротора). Как видно, при активно-емкостной нагрузке поле якоря имеет составляющую, подмагничивающую генератор.В случае активно-индуктивной нагрузки также возникает тормозной момент, а поле якоря размагничивает генератор.

14 Внешние характеристики синхронного генератора.

Как говорилось ранее, внешняя характеристика генератора независимого возбуждения U(I) определяется при следующих условиях: n = const и Iв = const. Так как напряжение синхронного генератора зависит при прочих равных условиях еще от характера нагрузки, то дополнительным условием, при котором следует определять внешнюю характеристику синхронного генератора, должно быть постоянство коэффициента мощности, т. е. cos φ = const.

Внешние характеристики синхронного генератора при активной (φ = 0), активно-индуктивной (φ > 0) и активно-емкостной (φ < 0) нагрузках приведены на рис. 11.6. Они являются наглядной иллюстрацией того, что говорилось в § 11.4 о влиянии характера нагрузки на напряжение генератора.

Относительное изменение напряжения генератора, %, оценивают по формуле

Δuном =

Uх - Uном

100 =

ΔUном

100,

Uном

Uном

где Uх — напряжение генератора при холостом ходе (I = 0), равное ЭДС; Uном — напряжение при номинальной нагрузке (I = Iном).

В случае наиболее часто встречающейся активно-индуктивной нагрузки при cos φ ≈ 0,8 относительное изменение напряжения Δuном у некоторых генераторов доходит до  35 — 45%

15 Регулировочные характеристики синхронного генератора.

Естественно, что поскольку напряжение синхронного генератора изменяется при изменении нагрузки в значительных пределах, необходимо принимать меры для уменьшения изменения напряжения. Этого можно добиться, очевидно, за счет соответствующего изменения ЭДС генератора E0 путем воздействия на его ток возбуждения Iв. О том, как и в каких пределах необходимо изменять ток возбуждения при изменении тока нагрузки генератора, чтобы поддерживать U = const, и дают представление регулировочные характеристики (рис. 11.7).

Дополнительным условием, при котором должна определяться каждая из характеристик (кроме n = const), является cos φ = const.

Следует обратить внимание на то, что для нормальных условий работы приемников электрической энергии необходимо поддерживать напряжение и частоту синхронного генератора на заданных уровнях. Для этого синхронные генераторы снабжаются в большинстве случаев регуляторами, управляющими напряжением и частотой вращения генераторов и воздействующими на ток возбуждения генераторов и момент первичного двигателя.

16 Принцип действия двигателя.

При работе синхронной машины в качестве двигателя обмотка якоря подключается к источнику трехфазного тока, в результате чего возникает вращающийся магнитный поток Фя. После разгона ротора до частоты вращения n, близкой к частоте вращения n0 поля якоря , его обмотка возбуждения подключается к источнику постоянного тока и возникает магнитный поток Ф0. Благодаря взаимодействию магнитного потока Фя и проводников обмотки ротора (или полюсов намагниченных сердечников якоря и ротора) возникает вращающий электромагнитный момент Мэм , действующий на ротор, и он втягивается в синхронизм, т. е. начинает вращаться с частотой вращения, равной частоте вращения n0 магнитного поля якоря.

Положение оси mm' магнитного поля ротора относительно оси КК' поля якоря и значение момента Мэм зависят от нагрузки двигателя. Так, при работе двигателя в режиме идеального холостого хода ротор занимает положение, показанное на рис. 11.3, а, при котором электромагнитный момент Мэм равен нулю. Некоторой механической нагрузке двигателя соответствует положение ротора, изображенное на рис. 11,3, в, которому соответствует определенный вращающий момент Мэм.

Значение тока якоря, интенсивность и характер действия реакции якоря зависят при Мэм = const от значения ЭДС Е0, которая определяется значением тока возбуждения Следует заметить только, что когда двигатель потребляет от источника только индуктивную или активно-индуктивную мощности, под действием поля якоря двигатель подмагничивается (рис. 11.3, а и в); в случае потребления емкостной или активно-емкостной мощности двигатель под действием поля якоря размагничивается.

Как и у других машин, у асинхронных машин электромагнитный момент незначительно отличается от момента, развиваемого машиной на валу. Поэтому для простоты анализа будем   считать   их   в   дальнейшем   равными   и   обозначать   М.

Существенной особенностью синхронного двигателя в отличие от асинхронного является то, что вращающий момент возникает у него в том случае, когда частота вращения ротора n равна частоте вращения n0 магнитного поля якоря. Объясняется это тем, что ток в обмотке возбуждения синхронного двигателя появляется не в результате электромагнитной индукции (как в обмотке ротора асинхронного двигателя), а вследствие питания обмотки возбуждения от постороннего источника постоянного тока.

Частота вращения магнитного поля якоря, а значит, и ротора синхронного двигателя определяется по формуле n0 = n = 60f/р.

Для получения различных частот вращения синхронные двигатели изготовляют с различными числами полюсов. При частоте f = 50 Гц частоты вращения будут 3000, 1500, 1000, 750 об/мин и т. д.

Принцип действия синхронных компенсаторов рассматривается в § 11.10

Трехфазные синхронные генераторы, двигатели и синхронные компенсаторы имеют в принципе одинаковое устройство.

Неподвижная часть машины, называемая статором (рис 11.1, а), состоит из стального или чугунного корпуса 1, в котором закреплен цилиндрический сердечник 2 статора. Для уменьшения потерь на перемагничивание и вихревые токи его набирают из листов электротехнической стали. В пазах сердечника статора уложена трехфазная обмотка 3, выполняемая так же, как и обмотка статора асинхронных двигателей. Сердечник статора в совокупности с обмоткой статора называется якорем машины. В подшипниковых щитах, прикрепленных с торцевых сторон к корпусу, либо в стояках, закрепленных на фундаменте, расположены подшипники, несущие вал 4 вращающейся части машины — ротора или индуктора. Синхронные генераторы гидроэлектростанций выполняют обычно с вертикальным расположением вала. На валу размещен цилиндрический сердечник 7 ротора, выполняемый из сплошной стали. В пазах сердечника ротора уложена обмотка возбуждения 8, питаемая постоянным током. Для присоединения обмотки возбуждения к внешней электрической цепи на валу укрепляют два изолированных друг от друга и от вала контактных кольца 6, к которым пружинами прижимаются неподвижные щетки 5. Обмотка 8   служит   для   возбуждения   основного   магнитного   поля   машины.

Питание обмотки возбуждения осуществляется от генератора постоянного тока (возбудителя), вал которого соединен с валом синхронной машины,  от  полупроводникового  преобразователя  переменного тока в постоянный либо от других источников постоянного тока. Мощность для питания обмотки возбуждения составляет 1 — 3 %мощности машины