Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекція Основи теорії холодильних машин

..doc
Скачиваний:
4
Добавлен:
31.07.2019
Размер:
86.02 Кб
Скачать

Тема: «Холодильні машини. Способи штучного охолодження»

План

  1. Види холодильних машин. Принципова схема компресійної холодильної машини.

  2. Принцип дії компресійної парової холодильної машини.

  3. Основи технологічного розрахунку роботи компресійної парової холодильної машини.

  1. Види холодильних машин. Принципова схема компресійної холодильної машини.

Холодильні машини бувають поршневі, компресійні, турбоком­пресорні, абсорбційні, пароежекторні, повітряні й термоелектричні.

У харчовій промисловості, торгівлі і ресторанному господарстві знайшли застосування переважно компресійні, а також абсорбційні холодильні машини.

На рис. 3.5 наведена принципова схема компресійної парової холодильної машини, що складається з компресора, конденсатора, випарника і регулюючого вентиля. Рідкий холодильний агент кипить у випарнику при зниженій температурі і тиску. Компресор безупинно відсмоктує пари, що утворилися, і знижує їхній тиск. Тепло від охолоджуваного приміщення або апаратів поглинається холодильним агентом у вигляді схованої теплоти випару.

Рис. 3.5. Принципова схема парової компресійної холодильної машини

Компресор стискає пари холодильного агента до тиску, при якому його температура насичення стає вищою за температуру навко­лишнього середовища. Тепло від конденсатора буде переходити у навколишнє середовище. Пари, віддаючи тепло, конденсуються. Рідкий холодильний агент після конденсатора подається через регулювальний вентиль у випарник за рахунок різниці тиску між ними. У випарнику він знову кипить, перетворюючись у пару, і весь цикл починається заново.

Процес роботи компресійної парової холодильної машини наве­дений у тепловій діаграмі з координатами: тиск lgP по осі ординат і ентальпія (тепломісткість) /' - по осі абсцис (рис. 3.6). На діаграмі нанесені дві пограничні криві: ліва (нижня) - лінія насиченої рідини з паровмістом х=0 і права (верхня) - лінія сухої насиченої пари з паровмістом х = І. Між верхньою і нижньою прикордонними криви­ми знаходиться зона вологої пари, що є сумішшю рідини із сухою насиченою парою. У цій зоні x більше 0 , но меньше 1. Праворуч від верхньої пограничної кривої лежить область перегрітої пари, а ліворуч від нижньої - область переохолодженої рідини. Обидві пограничні криві сходяться у точці, вище якої зникає розходження між парою і ріди­ною. Ця точка називається критичною.

Якщо 1 кг переохолодженої рідини нагрівати, тобто збільшувати її ентальпію, зберігаючи при цьому постійний тиск, то процес можна виразити в діаграмі lgP-i горизонтальною прямою лінією (рис. 3.6). Додавання тепла до переохолодженої рідини спричинить підвищення її температури до точки насичення 3 . Після цього почнеться часткове випаровування рідини, що буде відбуватися доти, доки вся рідина не перетвориться в суху насичену пару (точка 2'). Подальше підведення тепла призведе до перегрівання пари. При охолодженні перегрітої пари, тобто при зменшенні ентальпії, відбувається перехід її в насичену, а потім у рідину. Теоретичний процес роботи парової компресійної машини у діаграмі Р-і зображений на рис. 3.6.

Насичена, а частіше перегріта пара (точка 1), що утворилась у випарнику, стискується компресором з тиску Рo, що відповідає температурі кипіння у випарнику Т0, до тиску конденсації рк, що відповідає температурі конденсації Тк. Процес стиснення в компресорі для теоретичного циклу приймається адіабатичним, тобто відбува­ється без теплообміну з навколишнім середовищем. Практично цей теплообмін завжди присутній і тому процес стиснення відхиляється від адіабатичного.

Рис. 3.6. Теоретичний процес роботи парової компресійної холодильної машини в діаграмі Р-і

Гарячі пари холодильного агента, стиснуті компресором (точка 2), надходять у конденсатор, де тепло виводиться охолоджуваною водою або повітрям. Перегріта пара охолоджується, конденсується, при цьому отримана рідина також трохи переохолоджується (точка 4'). Процес дроселювання рідини від тиску конденсації Рк до тиску кипіння Р0 відбувається по лінії постійної ентальпії (лінія 4 -5), тобто ентальпії холодильного агента в точках 4 -5 рівні між собою. Відбувається часткове випаровування рідини, тому у випарник вхо­дить суміш пари з рідиною.

Кількість тепла, віднятого від охолоджуваного об'єкта одним кілограмом холодильного агента, тобто кількість отриманого холоду, складає

Робота теоретичного компресора з адіабатичним стисненням буде дорівнювати

Кількість тепла, відведена в конденсаторі (див. рис. 3.7),

Це рівняння теплового балансу будь-якої компресійної холодильної машини: кількість тепла, відведена в конденсаторі холодильної машини, дорівнює кількості тепла, отриманого від охо­лоджуваного об'єкта у випарнику, плюс тепловий еквівалент роботи, витраченої у компресорі.

Показником, що характеризує економічність холодильної маши­ни, є холодильний коефіцієнт, що дорівнює відношенню отриманої холодопродуктивності до витраченої роботи:

На величину холодильного коефіцієнта суттєво впливає режим роботи холодильної машини.

Якщо підвищувати тиск конденсації Рк, то відбудеться збільшення відрізка 1-2 (див. рис. 3.6), а отже, і роботи компресора L.

Оскільки кількість отриманого холоду q0 залишається без змін, то холодильний коефіцієнт, а отже, і економічність машини, змен­шиться.

У такий спосіб для підвищення економічності холодильної ма­шини доцільно підтримувати температуру, а отже, і тиск конденсації на якомога низькому рівні.

Якщо знижувати тиск кипіння Р0, то збільшиться і відрізок 1-2 (див. рис. 3.6), у той час як відрізок 5-1, що визначає кількість отриманого холоду, практично майже не зміниться. У цьому випадку холодильний коефіцієнт також зменшиться.

Отже, для підвищення економічності необхідна якомога більш висока температура кипіння.

Якщо при тих же температурах конденсації і кипіння збільшу­вати переохолодження рідини після конденсатора, то точка 5, а з нею і точка 4' перемістяться вліво. Це дасть збільшення відрізка 5-1 при тій же величині відрізка 1-2. При рівній роботі компресора збільшу­ється кількість отриманого холоду, що призводить до підвищення економічності холодильної машини. Отже, переохолодження рідини після конденсатора завжди доцільне.

Розрахунок теоретичного циклу холодильної машини зводиться до визначення теоретичної холодопродуктивності 1 кг холодильного агента q0, питомої холодопродуктивності Кт, кількості циркулюючого холодильного агента G, величини роботи адіабатичного стиснення / та інших величин.

Якщо питома годинна холодопродуктивність холодильної машини Q0 визначена відповідно до формули (3.12) холодопро­дуктивністю 1 кг холодильного агента, то можна обчислити і кількість робочого тіла, що проходить через циліндр компресора

Величина роботи адіабатичного стиснення в циліндрі компресо­ра на 1 кг холодильного агента визначається за формулою (2); адіабатична потужність стиснення на 1 кг холодильного агента в годину становитиме

де 860 - чисельна величина теплового еквівалента 1 кВт/год, тобто кількість тепла, еквівалентна роботі, зробленій за 1 годину машиною потужністю 1 кВт.

Годинний обсяг парів Vh, всмоктуваних компресором холодильної машини, визначають як відношення годинної холодопродуктивності до об'ємної холодопродуктивності агента

Об'ємною холодопродуктивністю називається холодопродуктив­ність парів холодильного агента на 1 м3, усмоктуваних у циліндр компре­сора холодильної машини. Чисельна величина об'ємної холодопродук­тивності дорівнює відношенню холодопродуктивності 1 кг холодильного агента до питомого обсягу його парів перед компресором:

Об'ємна холодопродуктивність будь-якого робочого тіла визна­чається умовами термодинамічного циклу (температурами кипіння, переохолодження і конденсації усмоктуваних парів). Теоретична холодопродуктивність компресора дорівнює добутку обсягу усмокту­ваних парів холодильного агента за годину Vh на об'ємну холо­допродуктивність q0:

Однак зі зміною температурного режиму циклу об'ємна холо­допродуктивність змінює своє значення: зі зниженням температури кипіння вона зменшується внаслідок зменшення питомої ваги усмок­туваних парів, а з підвищенням - збільшується. Отже, при незмінному обсязі усмоктуваних парів вагова кількість холодильного агента і холодопродуктивність компресора повинні змінюватися.

Залежно від температури кипіння і температури переохолоджен­ня значення об'ємної холодопродуктивності для різних холодильних агентів наводяться у таблицях.

Теоретична індикаторна потужність машини обчислюється за формулою

де Кт - теоретична питома холодопродуктивність, обумовлена як добуток теплового еквівалента (860 кВт/год) на холодильний коефі­цієнт є циклу:

Використана література: Устаткування закладів ресторанного господарства: Навч. посіб. /І.О. Конвісер, Г.А. Бублик, Т.Б. Паригіна, Ю.М.Григор’єв; За ред. І.О. Конвісера.- К.:Київ. нац. торг. – екон. ун-т, 2005. – 566 с.

Міністерство освіти і науки, молоді та спорту України

Миколаївський державний коледж економіки та харчових технологій

Лекція

з дисципліни

«Устаткування»

на тему:

«Холодильні машини. Способи штучного охолодження»

спеціальності 5.14010102

«Ресторанне обслуговування»

Розглянуто та затверджено

на засіданні циклової комісії

технологічних дисциплін

Протокол №____від_______

Голова циклової комісії

___________ О.І.Бєловол

м. Миколаїв