Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика i-exam.docx
Скачиваний:
9
Добавлен:
29.07.2019
Размер:
1.45 Mб
Скачать

Задание n 7 Тема: Законы постоянного тока

На рисунке представлены результаты экспериментального исследования зависимости силы тока в цепи от значения сопротивления, подключенного к источнику постоянного тока. ЭДС источника и его внутреннее сопротивление соответственно равны …

12 В, 1 Ом

9 В, 0,5 Ом

24 В, 3 Ом

18 В, 2 Ом

Решение: Из закона Ома для замкнутой цепи . Если из приведенного графика взять два значения сопротивления R и соответствующие им значения силы тока J и подставить их в это уравнение, то получим систему двух уравнений с двумя неизвестными. Например: Тогда , . Решая эту систему, получим:

Задание n 8 Тема: Явление электромагнитной индукции

Сила тока в проводящем круговом контуре индуктивностью 100 мГн изменяется с течением времени по закону (в единицах СИ): Абсолютная величина ЭДС самоиндукции в момент времени 2 с равна ____ ; при этом индукционный ток направлен …

0,12 В; против часовой стрелки

0,38 В; против часовой стрелки

0,12 В; по часовой стрелке

0,38 В; по часовой стрелке

Решение: ЭДС самоиндукции, возникающая в контуре при изменении в нем силы тока I, определяется по формуле: , где L – индуктивность контура. Знак минус в формуле соответствует правилу Ленца: индукционный ток направлен так, что противодействует изменению тока в цепи: замедляет его возрастание или убывание. Таким образом, ЭДС самоиндукции равна . Абсолютная величина ЭДС самоиндукции равна , индукционный ток направлен против часовой стрелки. При этом учтено направление тока в контуре и его возрастание со временем (что следует из заданного закона изменения силы тока).

ЗАДАНИЕ N 9 Тема: Электростатическое поле в вакууме

На рисунках представлены графики зависимости напряженности поля для различных распределений заряда: График зависимости для заряженной металлической сферы радиуса R показан на рисунке …

2

Решение: Напряженность поля внутри заряженной металлической сферы равна нулю, вне сферы убывает с расстоянием r по такому же закону, как для точечного заряда. Таким образом, график зависимости для заряженной металлической сферы радиуса R показан на рисунке 2.

ЗАДАНИЕ N 10 Тема: Уравнения Максвелла

Утверждение «Никаких источников магнитного поля, подобных электрическим зарядам (по аналогии их называют магнитными зарядами), в природе не существует» является следствием уравнения …

0

ЗАДАНИЕ N 11 Тема: Свободные и вынужденные колебания

На рисунках изображены зависимости от времени координаты и скорости материальной точки, колеблющейся по гармоническому закону: Циклическая частота колебаний точки (в ) равна …

2

Решение: При гармонических колебаниях смещение точки от положения равновесия изменяется со временем по закону синуса или косинуса. Пусть . Скорость есть первая производная по времени от смещения точки: . Отсюда амплитудное значение скорости . Отсюда . Приведенные графики позволяют найти и . Тогда циклическая частота колебаний точки .

ЗАДАНИЕ N 12 Тема: Сложение гармонических колебаний

Складываются два гармонических колебания одного направления с одинаковыми частотами и равными амплитудами Установите соответствие между амплитудой результирующего колебания и разностью фаз складываемых колебаний. 1. 2. 3.

1

2

3

0

Решение: Амплитуда результирующего колебания, полученного при сложении двух гармонических колебаний одного направления с одинаковыми частотами, определяется по формуле , где и – амплитуды складываемых колебаний, ( ) – разность их фаз. Если амплитуда результирующего колебания , то . Тогда и разность фаз будет равна . Если , то .Тогда , следовательно, . Если , то . Тогда ; следовательно, .

ЗАДАНИЕ N 13 Тема: Работа. Энергия

Частица совершила перемещение по некоторой траектории из точки 1 с радиус-вектором в точку 2 с радиус-вектором . При этом на нее действовала сила (радиус-векторы , и сила заданы в единицах СИ). Работа, совершенная силой , равна …

26

Решение: По определению . С учетом того, что ,

ЗАДАНИЕ N 14 Тема: Кинематика поступательного и вращательного движения

Частица из состояния покоя начала двигаться по дуге окружности радиуса с угловой скоростью, модуль которой изменяется с течением времени по закону . Отношение нормального ускорения к тангенциальному через 2 секунды равно …

8

4

1

2

ЗАДАНИЕ N 15 Тема: Динамика вращательного движения

Диск может вращаться вокруг оси, перпендикулярной плоскости диска и проходящей через его центр. К нему прикладывают одну из сил ( , , или ), лежащих в плоскости диска и равных по модулю. Верным для угловых ускорений диска является соотношение …

,

Решение: Согласно основному уравнению динамики вращательного движения твердого тела относительно неподвижной оси угловое ускорение равно: . Отсюда следует, что угловое ускорение прямо пропорционально моменту приложенной к диску силы, который, в свою очередь, прямо пропорционален величине плеча силы (при условии равенства модулей сил). Таким образом, , , так как плечо силы равно нулю, и поэтому момент силы равен нулю.

ЗАДАНИЕ N 16 Тема: Законы сохранения в механике

Теннисный мяч летел с импульсом в горизонтальном направлении, когда теннисист произвел по мячу резкий удар длительностью 0,1 с. Изменившийся импульс мяча стал равным (масштаб указан на рисунке): Средняя сила удара равна …

ЗАДАНИЕ N 17 Тема: Динамика поступательного движения

На рисунке приведен график зависимости скорости тела от времени t. Если масса тела равна 2 кг, то сила (в Н), действующая на тело, равна …

1

Решение: Из второго закона Ньютона , где а – модуль ускорения, который можно найти из графика зависимости : Тогда

ЗАДАНИЕ N 18 Тема: Элементы специальной теории относительности

-мезон, двигавшийся со скоростью (с – скорость света в вакууме) в лабораторной системе отсчета, распадается на два фотона: g1 и g2. В системе отсчета мезона фотон g1 был испущен вперед, а фотон g2 – назад относительно направления полета мезона. Скорость фотона g1 в лабораторной системе отсчета равна …

Решение: Фотон является частицей, которая может существовать, только двигаясь со скоростью с, то есть со скоростью света в вакууме. Кроме того, согласно одному из постулатов специальной теории относительности – принципу постоянства скорости света – скорость света в вакууме не зависит от движения источника света и, следовательно, одинакова во всех инерциальных системах отсчета. Поэтому скорость фотона g1 с учетом направления его движения в лабораторной системе отсчета равна .