- •Предмет физики. Связь физики с другими науками. Границы применимости классической
- •Кинематика материальной точки. Скорость и ускорение произвольно движущейся материальной точки.
- •Кинематика вращательного движения материальной точки.
- •Динамика материальной точки. Законы Ньютона.
- •Закон сохранения импульса в классической механике.
- •Инерциальные системы отсчета. Принцип относительности Галилея.
- •Работа и кинетическая энергия.
- •Потенциальное поле сил. Силы консервативные и неконсервативные.
- •Потенциальная энергия. Примеры. Закон сохранения энергии в механике.
- •Связь между потенциальной энергий и силой.
- •Движение твердого тела. Закон вращения твердого тела вокруг неподвижной оси.
- •Кинетическая энергия вращающегося тела. Работа сил при вращении тела вокруг неподвижной оси.
- •Моменты инерции некоторых тел. Свободные оси.
- •Теорема Штейнера.
- •Основные представления молекулярно-кинетической теории. Масса и размеры молекул. Понятие о статистическом методе.
- •Опытные газовые законы. Уравнение Менделеева-Клапейрона.
- •Основное уравнение молекулярно-кинетической теории газ зов и его следствия.
- •Внутренняя энергия газа. Число степеней свободы молекулы.
- •Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам. Уравнение Майера.
- •Теплоемкость идеального газа. Физический смысл универсальной газовой постоянной.
- •Круговые процессы (циклы). Тепловые и холодильные машины. К.П.Д. Тепловой машины.
- •Цикл Карно. К.П.Д. Идеальной тепловой машины.
- •Энтропия. Второе начало термодинамики.
- •Свойства электрического заряда. Закон Кулона. Закон сохранения электрического заряда. Работа по перемещению заряда в электростатическом поле.
- •Электрическое поле. Напряженность
- •Теорема Остроградского-Гаусса для поля в вакууме.
- •Примеры применения теоремы Остроградского Гаусса.
- •Потенциал электростатического поля.
- •Электрическое поле в веществе. Типы диэлектриков.
- •Теорема Остроградского-Гаусса для поля в диэлектрике. Электрическое смещение.
- •Проводники в электрическом поле.
- •Электроемкость уединенного проводника. Конденсаторы.
- •Энергия заряженного проводника, конденсатора.
- •Энергия электростатического поля.
- •Электрический ток, его характеристики и условия существования.
- •Скорость хаотического движения электронов в металле.
- •Классическая электронная теория электропроводности металлов.
Классическая электронная теория электропроводности металлов.
Исходя из представлений
о свободных электронах, Друде разработал
классическую теорию электропроводности
металлов, которая затем была
усовершенствована Лоренцем. Друде
предположил, что электроны проводимости
в металле ведут себя подобно молекулам
идеального газа. В промежутках между
соударениями они движутся совершено
свободно, пробегая в среднем некоторый
путь
.
Правда в отличие от молекул газа , пробег
которых определяется соударениями
молекул друг с другом, электроны
сталкиваются преимущественно не между
собой, а с ионами, образующими
кристаллическую решетку металла. Эти
столкновения приводят к установлению
теплового равновесия между электронным
газом и кристаллической решеткой.
Полагая, что на электронный газ могут
быть распространены результаты
кинетической теории газов, оценку
средней скорости теплового движения
электронов можно произвести по формуле
.
Для комнатной температуры (
300К)
вычисление по этой формуле приводит к
следующему значению:
.
При включении поля на хаотическое
тепловое движение, происходящее, со
скоростью
,
накладывается упорядоченное движение
электронов с некоторой средней
скоростью
.
Величину этой скорости легко оценить,
исходя из формулы, связывающей плотность
тока j с числом n носителей в единице
объема, их зарядом е и средней
скоростью
:
(18.1)
Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм2 = 107 А/м2. Взяв для n=1029 м-3, получим
Таким
образом, даже при больших плотностях
тока средняя скорость упорядоченного
движения зарядов в 108 раз меньше
средней скорости теплового движения
.
