
- •Охарактеризуйте наиболее важные биологические функции воды. Как эти функции связаны со строением молекулы воды?
- •Что такое рН растворов? Раскройте значение этого показателя для живых организмов.
- •Механизм действия буферных растворов.
- •Элементы-органогены. Влияние органогенов на свойства биогенных соединений.
- •4.Основные виды атомных группировок в составе биогенных соединений.
- •Биохимические функции минеральных субстратов. Макро- и микроэлементы.
- •Биологические функции и особенности строения аминокислот.
- •Биологические функции и роль пептидов.
- •Уровни организации белковых молекул. Механизм денатурации и ренатурации.
- •Изоэлектрическая точка и изоэлектрическое состояние аминокислот и белков. Физико-химические свойства аминокислот и белков.
- •Денатурация и факторы ее вызывающие.
- •Общие и отличительные свойства неорганического катализатора и фермента.
- •Чем обусловлена специфичность ферментов? Виды специфичности.
- •Методы определения и способы выражения активности ферментов.
- •Клиническое значение определения активности ферментов в биологических жидкостях.
- •Механизм ферментного катализа.
- •Биологические функции активного и аллостерического центров фермента.
- •Активаторы и ингибиторы ферментов, их биологическая роль.
- •Способы регулирования активности ферментов.
- •Мультиферментные комплексы, проферменты, изоферменты и их биохимическое значение.
- •Классификация и номенклатура ферментов.
- •Витамины – как предшественники коферментов.
- •Витамины группы в и их биохимические функции.
- •Строение и биохимические функции витамина а.
- •Строение и биохимические функции витамина д.
- •Строение и биохимические функции витамина е.
- •Строение и биохимические функции витамина к.
- •29. Роль гормонов в регуляции метаболизма. Классификация гормонов по химическому строению и биологическим функциям.
- •30. Строение, механизм синтеза и биологическая роль эйкозаноидов.
- •31. Биохимическая роль вторичных мессенджеров при передаче гормонального сигнала.
- •32. Механизм действия и передачи сигнала гормонов стероидной природы.
- •33. Механизм действия и передачи сигнала гормонов аминокислотной и белковой природы
-
Что такое рН растворов? Раскройте значение этого показателя для живых организмов.
Водородный показатель – рН – это мера активности (концентрации) ионов водорода в растворе, количественно выражающая его кислотность.
При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания – наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH–] говорят, что раствор является кислым, а при [OH–] > [H+] – щелочным, когда [OH–] > [H+ ], среда считается нейтральной. рН зависит от соотношения между положительно заряженными ионами (формирующими кислую среду) и отрицательно заряженными ионами (формирующими щелочную среду). Организм постоянно стремится уравновесить это соотношение, поддерживая строго определенный уровень рН. При нарушенном балансе могут возникнуть множество серьезных заболеваний.
Организм способен правильно усваивать и накапливать минералы и питательные вещества только при надлежащем уровне кислотно-щелочного равновесия. Уровень pH также важен для поддержания нормального действия ферментов, так как они способны проявлять активность только при определенных значениях pH(что отражает строгую специфичность ферментов). Основными механизмами поддержания этого равновесия являются: буферные системы крови (карбонатная, фосфатная, белковая, гемоглобиновая), респираторная (легочная) система регуляции, почечная (выделительная система). В среднем, большинство ферментов имеют максимальную активность при pH уровне 7,3 — 7,4. Любые, самые маленькие отклонения pH крови, снижают активность работы ферментов, следствием чего является замедление в биохимических процессах.
-
Механизм действия буферных растворов.
Буферными растворами называются растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания. Протолитические буферные растворы представляют смеси электролитов, содержащие одноимённые ионы.
Различают в основном протолитические буферные растворы двух типов:
- Кислотные т.е. состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты). Например: СН3СООН и СН3СООNa - ацетатный буфер.
СН3СООNa → Na+ + CH3COO-
- Основные, т.е. состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания). Например: NH4OH и NH4Cl – аммиачный буфер.
NH4Cl → Cl- + NH4+
Механизм действия:
Рассмотрим его на примере ацетатного буфера: СН3СООН + СН3СООNa
Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.
1. При добавлении небольшого количества хлороводородной кислоты, ионы Н+ связываются с имеющимся в растворе сопряженным основанием СН3СОО- в слабый электролит СН3СООН.
CH3COO‾ +H + ↔ CH3COOH (1)
Из уравнения (1) видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН3СООН. Количество СН3СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н+ в буфере увеличивается, но очень незначительно. рН сохраняется постоянным.
2. При добавлении к буферу небольшого количества щелочи протекает реакция её с СН3СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н2О и СН3СОО ‾:
CH3COOН + OH ‾ ↔ CH3COO‾ + H2O (2)
В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH3COONa. Количество СН3СООН убывает и по закону разбавления В. Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН3СООН. Следовательно, концентрация ионов Н+ практически не изменяется. рН остаётся постоянным.
3. При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.
Таким образом, рН буфера зависит от: константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. рН буфера будет наибольшим при соотношении компонентов равным единице.