Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kollokvium_1.docx
Скачиваний:
466
Добавлен:
04.06.2019
Размер:
818.73 Кб
Скачать
  1. Механизм ферментного катализа.

В основе действия ферментов лежит их способность ускорять реакции за счет уменьшения энергии активации субстрата. Ферменты деформируют электронные оболочки субстратов, облегчая таким образом взаимодействие между ними. Энергия, необходимая для того, чтобы привести молекулы в активное состояние, называется энергией активации. Роль обычного катализатора состоит в том, что он снижает энергию активации субстрата.

На первой стадии ферментативного катализа происходит образование фермент-субстратного комплекса, где фермент и субстрат могут быть связаны ионной, ковалентной или иной связью. 1. Фермент (enzyme, E) соединяется с субстратом (S), т. е. с веществом, на которое он действует: E + S=E—S. Как показывают стрелки, эта реакция обратима.

На второй стадии субстрат под воздействием связанного с ним фермента видоизменяется и становится более доступным для соответствующей химической реакции. 2. В результате этого соединения возникает E-S, фермент-субстратный комплекс.

На третьей стадии происходит химическая реакция, в результате которой образуется комплекс продукта реакции с ферментом. 3. После соединения с ферментом субстрат активируется, в результате чего входящие в молекулу субстрата атомы и электроны легко перестраиваются, что приводит к образованию продукта этой реакции (Р): E-S=>E-P.

Заключительным процессом является высвобождение продукта реакции из комплекса. 4. Этот комплекс затем подвергается диссоциации, освобождая продукт реакции и свободный фермент: Е-Р=>Е + Р.

В организме превращение веществ до конечных продуктов происходит в несколько этапов, каждый из которых катализируется отдельным ферментом.

  1. Биологические функции активного и аллостерического центров фермента.

Активный центр– комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом могут располагаться аминокислоты, значительно удаленные друг от друга в линейной цепи.

У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Аллостерический центр ("имеющий иную пространственную структуру") - участок молекулы фермента вне его активного центра, который обратимо связывается с каким-либо веществом. Такое связывание приводит к изменению конформации молекулы фермента и его активности. Активный центр либо начинает работать быстрее, либо медленнее. Соответственно такие вещества называют аллостерическими активаторами либо аллостерическими ингибиторами.

Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение пространственной конфигурации белка-фермента (активного центра) и, как следствие, скорости ферментативной реакции. В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество.

Схема, поясняющая работу аллостерического фермента. А - действие отрицательного эффектора (ингибитора); Б - действие положительного эффектора (активатора).